
Structure and Function in Nitrogenase Proteins 

Scott D. Rein Literature Seminar April 13, 1995 

The reduction of N2 to anunonia by nitrogen-fixing bacteria is an essential biological 
process [l]. Nitrogen-fixing bacteria generate approximately 60% of the world's fixed nitro
gen, an essential ingredient in agriculture [2]. The mechanism of nitrogen fixation is, how
ever, poorly understood. In order to better understand this mechanism, studies of nitrogenase 
and nitrogenase model compounds have been undertaken. 

Nitrogen-fixing bacteria use two-protein enzymes called nitrogenases as cat.alysts for 
the reduction of nitrogen to anunonia [3]. The reduction of N2 to anunonia, when catalyzed 
by a molybdenum-nitrogenase, has the following stoichiometry [3]: 

N 2 + Se- + 8H+ ~ 2 NH3 + H2 

There are three classes of nitrogenases, each coded by different genes. The first class is the 
molybdenum-nitrogenases. Genes for nitrogenases of this class are present, but not always 
expressed, in all nitrogen-fixing bacteria. The molybdenum-nitrogenases are the most thor
oughly characterized class of nitrogenases. The second class of nitrogenases are called the 
'alternate' nitrogenases or the vanadium-nitrogenases. These are very similar to molybde
num-nitrogenases. The vanadium-nitrogenases are, however, coded by separate genes. The 
gene is expressed when molybdenum is absent [3]. These alternate nitrogenases show less 
activity than the molybdenum-nitrogenases. They are sufficiently active, however to sustain 
culture growth. There is evidence for the existence of a third nitrogenase that contains only 
Fe and neither molybdenum nor vanadium. This enzyme has not yet been isolated. 

The crystal structures of the two proteins comprising the molybdenum-nitrogenase in 
Azotobacter vinelandii were solved to 2.7 A resolution by Kim and Rees in 1992 [4a,b] and 
subsequently refined to 2.2 A resolution [4c]. The larger protein, referred to as the MoFe 
protein or component one, is an cx2P2 tetramer. There are two types of metal complexes, the 
FeMo-cofactor and the P-cluster (Fig 1and2), in the MoFe protein. Each MoFe protein 
contains two of each of these complexes. The FeMo-cofactor is believed to be the active site 
of the enzyme[3-7]. It contains a Fe4S3 subunit bridged by three µ2-S atoms to an M0Fe3S3 
subunit . The terminal Fe of the Fe4S3 subunit is bound to a sulfur of a cysteine in the a 
subunit and the molybdenum is bound to a nitrogen of a histidine in the a subunit . The co
ordination sphere of molybdenum is completed by a bidentate ligand, a homocitrate mole
cule. The terminal iron center is four-coordinate. The remaining iron centers are three
coordinate and in a trigonal planar configuration. The distances between the three-coordinate 
iron centers in different subunits are unusually short at 2.5-2.6 A. The second type of met.al 
cluster in the MoFe protein is the P-cluster (Fig 2). The P-cluster is involved in the transfer 
of electrons from the Fe protein to the FeMo cofactor. The P-cluster consists of two Fe4S4 
cu banes connected by two µ2-S atoms between iron centers and a disulfide bond between 
two of the cluster sulfurs. The P-clusters connect the a and p domains (3-6], with one 
cubane bound to an a subunit and the other bound to a p subunit. All irons in the P-cluster 
are four-coordinate. The Fe protein is a dimer consisting of two identical subunits bridged 
through a Fe4S4 metal cubane (Fig 3) called the Fe-cofactor [3,8]. The second protein in ni
trogenases are called the Fe protein or component two. It acts as a source of electrons for the 
MoFe protein, each Fe protein being capable of providing one electron. Each iron center is 
four-coordinate (bound to three sulfurs in the cube and to the sulfur of one cysteine). 
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Developing an understanding of the way N2 binds to the FeMo-cofactor is central to 
understanding the mechanism of nitrogen fixation, and the study of model compounds has 
demonstrate possible binding configurations. A number of metal-N2 binding modes are 
known. ·The nitrogen may bind end-on or side-on either to one metal center or bridging be
tween two different metal centers [9]. An additional possibility is for the N2 to be coordi
nated to more ilian two metal centers [4c,10]. The specific coqrd.ination site of N2 in the 
FeMo-cofactor is as yet unknown. The three-coordinate iron center and the molybde
num/vanadium centers are both suspected binding sites. Model systems have been developed 
that have structural or chemical environments similar to the FeMo or FeV cofactors [6,9-27]. 
Models containing molybdenum, vanadium, and iron bound to N2 are known that produce 
ammonium when reduced [17,25,26]. For example, [Vdmpe2 (N2)2] (dmpe= bis(dimethyl
phosphino)ethane+}, forms NH4Cl when treated with dry HCl in TifF (tetrahydrofuran) in 
30% yield [25]. The cubane (Me4N)[(DMF)3VFe3S4Cl3}2DMF is a catalyst for the reduc
tion of hydrazine, believed to be an intermediate in nitrogen reduction to NH3, using cobal
tocene as a reducing agent and 2,6-lutid.ine hydrochloride as the proton source. An essen
tially quantitative production of NH3 was achieved [27]. 

Steps have been taken in understanding the mechanism of nitrogen fixation by nitro
genases. Complete understanding, however, awaits the synthesis of a functional, model 
compound that has the same stru_cture and chemical environment as the naturally occuring 
cofactors. This remains a goal for the synthestic inorganic chemist. 
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