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Metal-organic frameworks (MOFs), also known as porous coordination polymers,1-3 are 
porous materials in which metal-containing nodes are connected by organic bridges. A large 
variety of inorganic and organic components can be used to construct MOFs, and this versatility 
has enabled the rational design and assembly of materials having novel topologies and 
exceptional properties. 

 
Luminescent MOFs are potentially useful as chemically-selective sensors.4-7 We have 

discovered a new luminescent MOF synthesized by treating Eu(III) ions with 2,2′-bipyridine-
5,5′-dicarboxylic acid in N,N-diethylformamide (DEF). The X-ray crystal structure of the 
resulting material, Eu2(C12H6N2O4)3(DEF)4(H2O)5, shows that it is a MOF with large channels 
(25 × 15 Å), and that the carboxylate groups but not the nitrogen atoms of the bipyridine units 
are bonded to the europium centers. Surface area measurements on the desolvated material 
confirm that the material shows permanent porosity. When this material is exposed to 1,3,5-
trinitrotoluene (TNT) or smaller nitroaromatics, the fluorescence of this MOF is significantly 
quenched.  In contrast, 1,1-diphenyl-2-picrylhydrazine, a larger nitroaromatic, as well as 
aromatic molecules lacking nitro substituents, do not cause quenching.  Thus, the sensing ability 
of this MOF is both size- and chemoselective.  

 
 

 
 

Figure 1: Different size of polynitro-aromatics fitting into the pores of EuBDC in spacing filling 
mode, and the corresponding fluorescence spectra upon the successive addition of TNT solution. 

 
 
Treatment of Zn(II) ions with 2,2′-bipyridine-5,5′-dicarboxylic acid and formic acid gives a 

different MOF, Zn3(C12H6N2O4)2(O2CH)2•2DEF. Crystallographic studies show that this 
compound crystallizes in a chiral space group P41212 by spontaneous resolution,8-10 although the 
specimen we examined was a racemic twin. Two of the zinc atoms are five-coordinate, whereas 
the other zinc atom has an octahedral coordination environment. The chiral nano-pores, which 
have cross sections of 0.78 × 1.53 nm, are arranged in a herringbone fashion along the c axis. 

 
The ability of MOFs to withstand high pressures is necessary for many of the most 

interesting potential applications of MOFs.11-15 We carried out a high pressure study of the metal 



 

organic framework Zn4O(1,4-benzenedicarboxylate)3 (IRMOF-1) up to 8.93 GPa, using a 
synchrotron radiation source and a diamond anvil cell. Both as-synthesized and desolvated 
samples of IRMOF-1 retained some crystallinity to 6.57 GPa (65 700 atm) and 4.32 GPa (43 200 
atm), respectively.  Both begin to convert to a new material even at pressures as low as 0.21 GPa; 
for the as-synthesized and desolvated material, this process is essentially complete at 8.33 and 
5.17 GPa. The diffraction pattern obtained for the material formed by compression of the 
desolvated MOF suggests that pressure promotes a hydrolysis reaction; the water molecules 
necessary for this reaction were evidently absorbed from the atmosphere during sample handling 
after desolvation. Some amorphization occurs along with the formation of the new phase. 

 
	
  

	
  
	
  

Figure 2: Structural change of IRMOF-1 with increasing pressure. 
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