INTRODUCTION

Allenes are attracting increasing attention in organic synthesis, both as interesting building blocks and synthetic targets. However, since the first correct illustration of their structure in 1875 and synthesis in 1887, allenes have largely been considered highly unstable and thus poorly suited for synthesis. Only during the last decade has the use of allenes in organic synthesis undergone rapid development.

At present about 150 allene containing natural products have been isolated, and considerable effort has been given to their synthesis, as well as to the study of their biological activity. Methods for transforming allenes into various other functionalities, often in a stereoselective manner, have attracted even more attention. Allenes can participate in cycloaddition, radical reactions, metalations and other processes. Furthermore, the superb ability of allenes to transfer axial chirality to new stereogenic centers is being increasingly exploited in synthetic applications. Therefore, it is not surprising that asymmetric methods to prepare axially chiral allenic structures are currently the focus of active development.

Several of the most popular methods are highlighted in this review, including nucleophilic S$_{N}$2' substitution of propargyl derivatives, Stereoselective rearrangements, olefination with chiral auxiliaries and asymmetric catalysis.

DIASTEREOSELECTIVE SYNTHESIS OF AXIALLY CHIRAL ALLENES

From Organocuprate and Propargyl Derivatives

Synthetic Applications. After the first report by Crabbe in 1963, the S$_{N}$2' reaction of organocuprates with propargyl derivatives to yield allenes is becoming one of the most popular methods to prepare allenes, including axially chiral forms. Effective as leaving groups are acetates, carbonates, sulfonates, ethers, acetals, halides, oxiranes and aziridines, and cuprates range from simple Gilman reagents to more functionalized ones.
This reaction has been used as a key step in many syntheses.

A recent example is the synthesis of the acetylenic allenophanes 3 (Scheme 1), which possesses novel helical asymmetry due to the axially chiral allenic moiety. The (S)-allene in structure 2 was formed by the addition of methyl cuprate to the chiral propargyl acetate 1. The central chirality of the propargyl system was transferred to the axial chirality of the allene with little erosion.

Endocyclic allenes can also be obtained using this method. The 9-membered ring compound 5, containing a chiral allenic moiety, was formed from the propargyl acetate 4 without loss of optical purity (Scheme 2). The R group tested included n-butyl, t-butyl and isopropyl with chemical yields ranging from 49% to 80%.

The copper-mediated S_N2’ substitution reaction is not restricted to carbon-carbon bond formation. Bromoallenes, silylallenenes and stannylallenenes can also be formed using heterocuprare reagents. One example is illustrated in the total synthesis of isolaurallene 1 (8, Scheme 3). The bromoallene moiety in the advanced intermediate 7 is formed diastereoselectively by treatment of propargyl trisylate 6 with lithium bromocuprate. This resulted in a 67% yield of an 8:1 mixture favoring the desired diastereoisomer. Further elaboration of this advanced intermediate allowed the formal total synthesis of isolaurallene 1.

The wide scope of the heterocuprates in this reaction is further demonstrated in the construction of the core skeleton of (-)-coccinine (11, Scheme 4). Reaction of the silyl cuprate with propargyl acetate 9 proceeded with anti S_N2’ substitution stereochemistry to furnish the imino silylallene 10 in 84% yield. This intermediate was further transformed into the final natural product (-)-coccinine.

Besides propargyl ethers, β-lactones, epoxides and aziridines are attractive variant leaving groups for the construction of allenes. The addition of the nonyl cuprate to the disubstituted

![Scheme 2. Synthesis of Endocyclic Allenes.](image1)

![Scheme 3. Application in the Total Synthesis of Isolaurallene 1](image2)

![Scheme 4. Application in the Total Synthesis of (+)-Coccinine.](image3)

![Scheme 5. Application in the Total Synthesis of (-)-Malyngolide.](image4)
oxetanone 12 (Scheme 5) afforded the tri-substituted allene 13 in 92% yield and 95:5 er, which upon further transformation led to the naturally occurring antibiotic (-)-malyngolide 14.12

The total synthesis of 6′-epi-peridinin exploited copper-mediated SN2′ substitution of an oxirane with bromide ion. Thus, the alkynyl oxirane 15 (Scheme 6), under the conditions of Chemla13 (40%HBr, CuBr, NH4Br, Et2O, -10 °C, 2.5h), yielded exclusively the anti SN2′ displacement product, allene 16, in 85% yield. Further transformations of 16 furnished an epimer of the natural product peridinin.14 Likewise, amino allenes can also be obtained from chiral alkynyl aziridines15 and allenic alcohols from propargylic cyclic carbonates or sulfonates.16

Interestingly, vinyl allenes can be accessed through 1,5-addition of cuprates to enyne acetates.17 However, in this case, two types of stereoselectivity should be taken into account: the configuration of the allenic chirality axis (S or R) and of the olefinic double bond (Z or E). As shown below, the relatively long distance between the stereogenic center and the nucleophilic attack position in this 1,5-substitution reaction provides a rare example of “remote stereo control”.18 Thus, the best stereoselectivity was observed in the reaction of the trimethylsilyl substituted enyne acetate 17 (Scheme 7) with di-n-butylcyanocuprate, lithium cyanide and tri-n-butyl phosphine at –80 °C. This combination afforded vinylallene 18 as a 40:60 mixture of E/Z isomers both with er’s as high as 99.5:0.5. The absolute configuration of the products was not determined.

Stereochemical Rationale. The SN2′ substitution of propargyl derivatives by organocuprates was proposed to proceed through a copper(III) intermediate 19 (Scheme 8).19 The in situ generated organocuprate coordinated with the acetylenic moiety of the propargyl derivative to form a copper(III) π-complexes 19, which underwent subsequent elimination of the leaving group when the copper and the leaving group possessed an antiperiplanar disposition. Besides the interaction between the copper p, d orbitals and acetylenic π, π* orbitals, the electron donation from a copper d orbital to the antibond of the C-O σ* bond is also conceivable. It was proposed that this latter interaction initiated the dissociation of the leaving group.
The resulting allenic cuprate 20 collapsed by reductive elimination, regenerating the halocopper and giving the allene product 21 with an overall anti-S_N2’ stereochemistry.

In some special cases, an overall syn-S_N2’ stereochemistry are observed, probably due to a syn elimination of the π-complex 19.²⁰

Palladium Catalysed Substitution from Propargyl Derivatives.

From Propargyl Derivatives. It was found that catalytic amounts of tetrakis(triphenylphosphine)-palladium were able to effect the transformation of propargyl ethers or esters to the allenylpalladium intermediate 29 (Scheme 10). As illustrated in Scheme 9, this intermediate can be further transformed into allenes stereoselectively with zinc reagents. ²³ The proposed catalytical cycle is as follows (Scheme 10): the palladium(0) assumes a nucleophilic attack antiperiplanar to the leaving group, forming the chiral allenylpalladium intermediate 29 which couples with the organozinc reagent; subsequent reductive elimination regenerates the palladium(0) catalyst and gives the chiral allene 33 through an anti-S_N2’ process. In some cases, however, the palladium undergoes a [1,3]-sigmatropic rearrangement to afford the propargylpalladium intermediate 30, which is directly displaced by the organozincate to give syn-S_N2’ chiral allene 31, resulting in erosion of stereoselectivity.

Carbonylation can be added to the above reaction cycle. For example, the nonracemic propargyl mesylate 34 (Scheme 10), when treated with carbon monoxide ,trimethylsilanylethanol and a palladium catalyst, gave trimethylsilylethyl allenyl ester 35 as a single isomer. The product was an intermediate in the synthesis (-)-Kallolide B 36, the enantiomer of the natural product.²⁴

Scheme 10. Application in the Total Synthesis of (-)-Kallolide B.
STEREOSPECIFIC REARRANGEMENT FROM PROPARGYL DERIVATIVES

The stereospecific Wittig rearrangement of chiral propargyl ethers and the ortho ester Claisen rearrangement of chiral propargyl alcohols constitute important and convenient methods to prepare axially chiral allenes.

Orthoester Claisen Rearrangement

Scheme 11 depicts the stereospecific conversion of propargylic alcohol 37 via an orthoester Claisen rearrangement, resulting from treatment with triethyl orthoacetate and acetic acid, to allenic ester 38, the product of syn elimination. Further transformations lead to 39, one stereoisomer of enprostil.25

Wittig [2,3]-Rearrangement

Under basic conditions, certain propargyl ethers can undergo a Wittig [2,3]-rearrangement to give allenols or allenic esters. The process is stereoselective on the propargyl carbon if the substrate is chiral or a chiral base is used.26 As demonstrated in Scheme 13, when an achiral base such as LDA was used to effect the Wittig rearrangement of the enantiopure propargyloxy acetic acid 40, allenic α-hydroxyl ester was obtained as two enantiomers 41 and 42 in a 93:7 enantiomeric ratio. This ratio increased to 99:1 when the matched chiral base ((R,R)-amide) was used and lowered to 81:19 with the mismatched (S,S)-amide base.

Scheme 12. Wittig Rearrrangement to Afford Axially Chiral Allenes.

<table>
<thead>
<tr>
<th>Base</th>
<th>Yield (%)</th>
<th>(S,aR)/(R,aR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S,S)-[PhCH(Me)]2NLi</td>
<td>81</td>
<td>81/19</td>
</tr>
<tr>
<td>LDA</td>
<td>80</td>
<td>93/7</td>
</tr>
<tr>
<td>(R,R)-[PhCH(Me)]2NLi</td>
<td>79</td>
<td>>99/1</td>
</tr>
</tbody>
</table>
OLEFINATION WITH CHIRAL AUXILIARIES

Wittig or Horner-Emmons olefination are important methods to form carbon-carbon double bonds, so it is not surprising that they had been used to form the double bonds in allenes. Chiral auxiliaries can be used to prepare axially chiral allenes stereoselectively, the best results being obtained with reagents having chiral phosphorus groups, such as phosphonoacetic acid methyl ester 43 (Scheme 13) that bears a chiral binol group. The phenyl benzyl ketene 44, generated in situ from the corresponding disubstituted acetic acid phenyl ester, underwent Horner-Wadsworth-Emmons reaction with 43 to give axially chiral allenic ester 45 with chemical yield 55% and ee as high as 89%.

Scheme 13. Olefination to Form Allenes with Binol as a Chiral Auxiliary.

An alternative approach places the chiral auxiliary on the ester group as illustrated in Scheme 14. The isoborneol phosphorus ylide 46 reacted with in situ-generated ketenes to give the corresponding chiral allene 48 as a single diastereomers, with chemical yields as high as 76%. Cleavage of the chiral auxiliary can be achieved by alkaline hydrolysis to afford the corresponding allenic ester.

Scheme 14. Olefination to Form Allenes with Isoborneol As Chiral Auxiliary.

ASYMMETRIC CATALYSIS

Increasing attention has been paid to the synthesis of axially chiral allenes via catalytic asymmetric synthesis; yet, since the first report in 1993, this protocol is still not yet well developed. Several ways have been reported to date: palladium-catalyzed hydroboration and hydrosilylation of enynes, rhodium-catalyzed hydrosilylation of butadiynes, palladium-catalyzed substitution of 2-bromo-1,3-dienes, and 1,6-addition to enynones. However, each protocol is restricted to specific substrates and reagents, and is thus limited in application. Only nucleophilic substitution of 2-bromo-1,3-dienes has been used in total synthesis. Utilizing this method, efficient synthesis of the sex attractant of the male dried bean beetle, methyl trienoate 51 (Scheme 15), has been achieved from prochiral bromo diene 49 via intermediate 50. Axially chiral ligands, such as BINAP and segphos.
proved effective in the catalysis, though in this case segphos was superior. With this method, alkyl allenes and alleny silanes can also be accessed with er’s up to 94:6.

Scheme 15. Application in Total Synthesis of the Sex Attractant of Male Dried Bean Beetle.

A probable mechanism for the above asymmetric reaction was proposed (Scheme 16): the palladium insertion in bromodiene 52 resulted in the key alkylidene-π-allyl palladium intermediate, which equilibrates between two diastereomers 54 and 55. The enantiomer 54 enjoys much less steric congestion from the chiral environment created around the Pd(II) ion and is therefore energetically favored, giving the enantioenriched allene 56 upon attack of a soft nucleophile.

Scheme 16. Catalytic Cycle of Asymmetric Synthesis From Bromodiene

CONCLUSION

Various methods leading to the asymmetric synthesis of axially chiral allenes are illustrated here, including substitution of propargyl derivatives with organometallic reagents, rearrangement of propargyl ethers and esters, olefination of phosphorous reagents carrying chiral auxiliaries with in situ generated ketenes, and the newly developed enantioselective catalytic protocols. Key challenges remaining include the construction of several specific allenic structures, such as chiral tetra-substituted allenes and allenyl metal reagents, as well as further developments in catalytic enantioselective methods. Because of the vigorous research in this area, one can expect more applications of these methods in total synthesis and varied synthetic transformations.
REFERENCES

1) Van’t Hoff, J. H. *La Chimie dans L’Espace, Bazendijk*, Rotterdam, 1875.

Copyright © 2005 by Yuan Shi