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Hydrotreating, the removal of heteroatom impurities from crude oil, is an important 
step in the refining process. These impurities exist as organic compounds containing nitro
gen, sulfur, oxygen and can occur as a mixture of free heterocycles and complexes of vana
dium and nickel. Compounds such as these can poison the hydrocracking and reforming cat
alysts, resulting in major economic and processing problems. Furthermore, the combustion 
of organonitrogen and organosulfur compounds results in the emission of nitrogen and sulfur 
oxides. Hydrodenitrogenation, HDN, is one part of the hydrotreatment process in which ni
trogen impurities are removed from petroleum feed stocks as NH3 (eqn. 1) [1, 2]. 
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The wide variety of substrates and intermediates in the process has made research in 
this area difficult. Thermodynamic studies indicate that the process is exothermic [3] and ki
netic studies indicate that the hydrogenolysis of the C-N bond is the rate-limiting step [ 4]. 
While the mechanism for the process has yet to be determined, empirical studies indicate that 
hydrogenolysis occurs via two routes, a Hofmann type elimination or nucleophilic substitu
tion [5, 6]. 

Although many transition metal sulfides are HDN active [7], the process is generally 
carried out over a sulfided NiMo/y-Al203 catalyst. Spectroscopic studies of the sulfided 
catalyst indicate that it exists as alternating layers of sulfur anions with molybdenum cations 
between the layers [8]. EXAFS of nickel in the catalyst suggest that the nickel is coordinated 
at edge sites, possibly in a square pyramidal fashion (Figure 1) [8, 9] . 

Figure 1 

Homogeneous modeling of the HDN process could provide useful information on the 
structural, electronic, and chemical properties of the substrate. Organometallic compounds 
utilizing late transition metals have been observed to selectively hydrogenate the heteraro
matic ring under relatively mild conditions [10, 1 lJ. Studies of transition metal complexes 
have shown that aromatic N-heterocycles can have several different modes of coordination, 
such as 11L(N),112-(C,C), 112-(N,C), and 116-(C5R5N). The 112-(N ,C) coordination can result 
in the activation of the C2 carbon, as seen in organometallic complexes of scandium in which 
the hydrogen on C2 can undergo deuterium exchange [ 121 and zirconium where alkyl groups 

5 



can be added at the C2 position [13]. In the case of tantalum, coordination of pyridine results 
in the disruption of aromaticity in the heteroaromatic ring as a result of 7t-backbonding [14, 
15]. A possible intermediate in the HDN process could be the formation of a metal imide 
species. Although there are several methods to synthesize imide complexes, two methods 
applicable to HDN involve the hydrogenolysis of the C-N bond in an ri2-(N,C)(C5H2(t
Bu)JN)Ta complex, eqn. 2 [16], and the thermal dealkylation of 112-(N,C) iminoacyl tantalum 
complexes [17, 18]. Furthermore, the coordination of an imide in an 112-(N,C) fashion may 
represent a possible intermediate in the dealkylation of imides [19]. 

(2) 

OR = 2,6-diisopropylphenoxide 

Although much can be learned through homogeneous modeling, its relevance to the 
actual process is presently limited. Furthermore, direct information about the process is 
hampered by the complex environment for the catalytic sites and a complex reaction network 
which precludes the use of many spectroscopic techniques. 
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