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The subtle interaction of biological organization and mineral growth results in the for
mation of amorphous and crystalline material of different form, symmetry and structure. These 
bioinorganic solids are replicated throughout the evolution. As they belong both to the living 
and inanimate world, their genesis is one of the most intriguing and fundamental topics in 
science. It is therefore a true interdisciplinary area of research that overlaps with such diverse 
fields as inorganic, physical, organic, geological and biological branches of chemistry, material 
science, orthopaedics, dentistry, paleontology, mineralogy, archaeology, crystallography, 
molecular and cell biology and evolution etc. There are approximately()() different biogenic 
minerals known to date, occurring in about 55 different phyla [l]. Of these, calcium carbonate 
is the most utilized bioinorganic constituent [2]. Phosphates, and iron oxides are also widely 
distributed and formed in huge amounts in the biosphere. Most of the important studies in this 
fi~ld have been done in the last 10-15 years, upon the advent of modern characterization tech
mques. 

Two fundamentally different processes of mineral formation can be distinguished. 
"Biologically induced mineralization" [3] is the process in which the mineralization occurs in 
the environment which is not specifically designed for it. The process in which a specific ma
chinery is set up for the purpose is called "Biologically controlled mineralization" [4]. Most of 
the research in the field aims for a better understanding of the control processes. In this talk, 
the central focus will be calciwn and iron biomineralization. 

The important techniques used in the studies of biominerals are electron microscopy, 
advanced X-ray techniques and Mossbauer spectroscopy (for iron biominerals). 

Calcium biominerals are deposited in the wide variety of bacteria, protozoa, algae, 
higher plants, invertebrates and vertebrates [5,6]. The major structural polymorphs identified 
in the biological systems are calcite, aragonite and valerite (CaC03 phases), hydroxyapatite 
[Ca1o(P04)10(0H)2]. There are evidences of amorphous and a range of Ca/Mg carbonate 
phases also. 

The calcium carbonate/sulfate mineralization in the unicellular organisms is controlled 
by factors like ionic concentration (supersaturation), nucleation, and crystal growth. A model 
study involving the use of stearic acid and octadecylamine monolayers in the controlled crystal
lization of CaC03 from supersaturated solutions suggests an important role of the organic 
surfaces [7 ,8]. 

The mineral phase of the sea-urchin-skeleton is composed of Mg-bearing calcites 
(composite materials), which diffract the X-rays as single crystals. It has unique fracture prop
erties, different from its inorganic counterpart. Internal texture of biogenic and synthetic calcite 
crystals have been studied to gain an insight into the unique protein- crystal composites [9,10]. 
X-ray absorption spectroscopy has been applied to study the perturbation due to a foreign ca
tion on the biologically formed minerals [11]. 

Iron biominerals are known to occur in many organisms. This is due, perhaps, to the 
importance of iron in many metabolic processes [12]. The discovery of a very simple 
magnetotactic response in a certain species of bacteria is very interesting and important [13] . 
Electron diffraction techniques have been used to determine the structure of the magnetic 
particles extracted from different bacteria [ 14, 15]. As the sample required for the Mossbauer is 
much larger than that available, very few bacterial magnetite studies using Mossbauer 
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spectroscopy have been reponed to date [16.17]. Crystals from A. magnetotacticum at early 
stages of growth have been studied in situ by HRTEM (High Resolution Transmission 
Electron Microscopy) [18]. 

The occurrence of several forms of iron sulfide in sulfur bacteria [ 19-21] has led to 
speculation as to whether sulfur bacteria have a homeostasis device based upon Fe/S rather 
than on Fe/0 solids, and whether this was an earlier form (in anaerobic life) of iron storage 
[22-26J. The answer to this question will help in understanding the evolution of life on earth. 

Application of the concepts of biomineralization to synthetic systems is an imponant 
goal [27 ,28). Supramolecular protein cages have been used as constrained reaction environ
ments in the synthesis of inorganic materials of nanometer dimensions (29]. The synthesis of a 
composite material in which cadmium sulfide crystals are embedded in the polymer matrix, 
thus mimicking certain biological materials, has been reported [30]. There is growing aware
ness in materials science that the adaptation of biological processes may lead to a significant 
advances in the controlled fabrication of superior composites, ceramics, and polymers. 
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