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Introduction: 

Non-covalent interactions govern most chemical changes in biology and chemistry. Weak 

interactions – between 1 and 10 kcal/mol – are used to alter the native reactivity of 

countless systems, stabilizing transition states to achieve site-, regio-, and stereoselective 

chemical change. These include ion pairs and hydrogen bonding interactions.1,2 Nature is 

particularly gifted at using this approach, and enzymes employ a number of such non-

covalent interactions to preorganize a substrate within an active site. These principles have 

been thoroughly applied in organic synthesis.3 In contrast, in order to alter the innate 

reactivity of transition-metal 

catalysts, directing groups that bind 

covalently to the metal center are 

often used (Scheme 1b). This 

approach has been explored 

extensively with a variety of 

catalysts and systems.4 More 

recently, methods have emerged 

that use functional groups in the 

secondary coordination sphere of 

transition-metal catalysts to 

preorganize substrates and control 

selectivity (Scheme 1c). 

Outline: 

There are three principle 

advantages to using non-coordinating preorganization for controlling reactivity in 

transition-metal catalysis: (1) breaking covalent coordination of a directing group to a 

metal center generally requires harsh conditions while relatively mild conditions can be 

used to disrupt non-covalent interactions and turn over the catalyst;5 (2) a covalent 

Scheme 1:  Strategies in Transition-Metal Catalysis; (a) Metal-Catalyzed 
Transformations; (b) Traditional Directing Group Approach; (c)  Non-
Covalent Directing Group Approach 
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directing group approach often requires some strongly Lewis basic functionality while a 

variety of functional groups can direct in a non-covalent fashion; (3) preorganization 

involving ligand-substrate interactions does not require a coordination site at the active 

transition-metal center and does not change the inherent reactivity of the catalyst. 

The groups of Breslow and Campbell developed a platform for a site-selective metal-oxo 

catalyzed oxidation of C(sp3)–H bonds using cyclodextrins to induce selectivity.6 This work 

set the groundwork for Crabtree and Brudvig to develop a strategy of using non-

coordinating interactions to selectively oxidize the benzylic C–H bonds of Ibuprofen using a 

manganese catalyst.7 A number of groups have also reported on the use of non-

coordinating interactions in transition-metal catalysis to induce regioselectivity,1 defined as 

the reaction at one site over the other within a single functional group. Many of these are 

arene iridium-catalyzed C–H borylations or rhodium-catalyzed alkene 

hydrofunctionalizations. More recently this strategy has been invoked as an explanation for 

enhancing enantioselectivity in various transformations, including transition-metal 

catalyzed reductions and oxidations.8 

There are reports highlighting four different ligand-substrate interactions to induce 

selectivity:  (1) coordination either through a Lewis base/acid adduct between substrate 

and ligand or involving two Lewis basic sites mediated by a cation; (2) hydrophobic 

interactions between a catalyst’s cyclodextrin rings and a substrate’s non-polar groups; (3) 

electrostatic interactions involving full or partial charges between substrate and ligand; (4) 

hydrogen bonding, involving either one or two point binding modes. Many groups are 

currently focused on developing methods that employ weaker, less-strongly bonding 

interactions to control selectivity in transition-metal catalysis.  
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