Ligand-Substrate Interactions for Preorganization in Transition-Metal Catalysis

William Wertjes

Introduction:

Non-covalent interactions govern most chemical changes in biology and chemistry. Weak interactions – between 1 and 10 kcal/mol – are used to alter the native reactivity of countless systems, stabilizing transition states to achieve site-, regio-, and stereoselective chemical change. These include ion pairs and hydrogen bonding interactions.\(^1\)\(^2\) Nature is particularly gifted at using this approach, and enzymes employ a number of such non-covalent interactions to preorganize a substrate within an active site. These principles have been thoroughly applied in organic synthesis.\(^3\) In contrast, in order to alter the innate reactivity of transition-metal catalysts, directing groups that bind covalently to the metal center are often used (Scheme 1b). This approach has been explored extensively with a variety of catalysts and systems.\(^4\) More recently, methods have emerged that use functional groups in the secondary coordination sphere of transition-metal catalysts to preorganize substrates and control selectivity (Scheme 1c).

Outline:

There are three principle advantages to using non-coordinating preorganization for controlling reactivity in transition-metal catalysis: \(\textbf{1}\) breaking covalent coordination of a directing group to a metal center generally requires harsh conditions while \textit{relatively mild conditions} can be used to disrupt non-covalent interactions and turn over the catalyst;\(^5\) \(\textbf{2}\) a covalent
directing group approach often requires some strongly Lewis basic functionality while a variety of functional groups can direct in a non-covalent fashion; (3) preorganization involving ligand-substrate interactions does not require a coordination site at the active transition-metal center and does not change the inherent reactivity of the catalyst.

The groups of Breslow and Campbell developed a platform for a site-selective metal-oxo catalyzed oxidation of C(sp³)-H bonds using cyclodextrins to induce selectivity. This work set the groundwork for Crabtree and Brudvig to develop a strategy of using non-coordinating interactions to selectively oxidize the benzylic C-H bonds of Ibuprofen using a manganese catalyst. A number of groups have also reported on the use of non-coordinating interactions in transition-metal catalysis to induce regioselectivity, defined as the reaction at one site over the other within a single functional group. Many of these are arene iridium-catalyzed C-H borylations or rhodium-catalyzed alkene hydrofunctionalizations. More recently this strategy has been invoked as an explanation for enhancing enantioselectivity in various transformations, including transition-metal catalyzed reductions and oxidations.

There are reports highlighting four different ligand-substrate interactions to induce selectivity: (1) coordination either through a Lewis base/acid adduct between substrate and ligand or involving two Lewis basic sites mediated by a cation; (2) hydrophobic interactions between a catalyst’s cyclodextrin rings and a substrate’s non-polar groups; (3) electrostatic interactions involving full or partial charges between substrate and ligand; (4) hydrogen bonding, involving either one or two point binding modes. Many groups are currently focused on developing methods that employ weaker, less-strongly bonding interactions to control selectivity in transition-metal catalysis.

References:
2. Dalton Trans. 2011, 40, 4355
3. Chem. Rev. 1993, 93, 1307
5. Chem. Sci. 2017, 8, 864
7. Science 2006, 312, 1941