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Since its discovery in 1951, Nuclear Quadrupole Resonance 
(NQR) spectroscopy has been used to study the electronic environ­
ment around quadrupplar nuclei. However, the low sensitivity of 
direct methods for detecting the transitions of lighter quadru­
polar nuclei ( 2 H, 10

'
11B, 170, 25 Mg, etc.) has severely limited 

the usefulness of NQR spectroscopy. Drastic improvements in the 
sensitivity and spectroscopic range of the NQR technique were made 
with the advent of double resonance NQR techniques [l]. Quadrupolar 
nuclei previously inaccessible to traditional methods are now 
detectable at concentrations of 10- 6 of the abundant nuclear spin, 
making NQR spectroscopy an important tool for the study of the 
solid state electronic structure of molecules. 

NQR spectroscopy measures the interaction of a nucleus, 
possessing an electronic quadrupole moment Q, with the electric 
field gradient produced at the nucleus by its local electronic 
environment. As a result, the NQR technique provides information 
on the ground state charge distribution in the vicinity of the 
quadrupolar nucleus. 

In this work th~ 14 N and 170 NQR spectra for a series of 
substituted aromatic amine oxides was utilized to probe the 
electronic nature of the N-0 group. Aromatic amine oxides have 
elicited considerable chemical [2], pharmacological [3), and 
theoretical interest [4]. Fundamental to their chemistry is the 
dual pi electron, donor-acceptor role of the NO moiety. With the 
aid of 13C CP-MAS NMR [5,6] t.te orientation of electric field 
gradient (efg) tensor of the N-0 group has been determined. Using 
a modified Townes-Dailey model [7] , analyses of the hydrogen 
bonding, coordination, and ring substitution effects on the nature 
of the N-0 group are interpreted in terms of the nitrogen valence 
p orbital population. Further, the Z axis of . the 170 efg tensor 
has been shown to lie along the N-0 borid. Analysis of the 170 
NQR results of the oxide group oxygen for a series of substituted 
pyridine-N-oxides proves a quantitative measure of the sensitivity 
Of the pi-bond order to variations in the para substituent. Changes 
in the solid state N-0 pi-bond order correlate with shifts in 
the N-0 stretching frequency [8], as well as with 170 and 15N NMR 
chemical shifts in solution [9,10]. 

The 2 H and 14N NQR spectra for a series of urea adducts were 
studied to develop a better understanding of the nature arid. extent 
of charge transfer that occurs in the peptide linkage, -CONH 2 , upon 
the formation of N-H---0 and 0-H---o hydrogen bonds. Urea, a basic 
biological building block, was chosen for study because of its 
ability to form a large variety of adducts which exhibit varying 
degrees of hydrogen bonding. The NQR results along with crystal­
lographic data [11] show the existence of a correlation between 
H---o contact distance and the C-0 bond length. There is lengthening 
of the C-0 bond with decreasing 0---H contact distance. In terms 
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of classical valence bond theory, other canonical forms become 
increasingly important with increasing protonation of the carbonyl 
oxygen. Crystallographic data indicate the presence of an inverse 
relationship between C-0 and C-N bond lengths, through a range of 
l.30-l.40A and l . 30-l.20A respectively. A variation of ~ o.lA 
(about 0.5 bond order) indicates a dramatic variation in the 
electronic structure of the amide framework. The 2 H and 1 ~N NQR 
data provide quantative measures of electronic changes as well as 
the variations in valence shell orbital populations that occur 
with changing hydrogen bond order. 
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