Push-Pull Porphyrins as Non-Linear Optical Materials

Chin-Ti Chen

Final Seminar

Porphyrins and metalloporphyrins provide a versatile synthetic base from which to design molecules with specific physical and chemical properties. The successes of such molecular engineering include the design of reversible O₂ binders [1], shape selective catalysts [2], molecular receptors [3], one-dimensional conductors and semiconductors [4], and models for the photosynthetic reaction center [5]. The development of metalloporphyrins as materials with electric, magnetic or optical field-responsive properties, however, has been extremely limited. We have been interested in the exploration of porphyrin and metalloporphyrin assemblies as ferroelectric [6] and as non-linear optical materials. Molecules with non-linear optical (NLO) properties have been extensively investigated due to their potential applications for optical communication, data storage, and electrooptical signal processing [7].

Donor-acceptor unsymmetrically substituted porphyrins, $H_2(an_3Por)$, $H_2(cis-a_2n_2Por)$, and $H_2(a_3nPor)$ (where a = p-aminophenyl; n = p-nitrophenyl; Por = 5,10,15,20-substituted porphyrin) have been prepared with $\approx 25\%$ isolate yield each. The synthesis does not involve the traditional cross-condensation for multi-substituted porphyrins, which usually results in low yield (<10%). Instead, these porphyrins were synthesized through the incomplete reduction of four nitro substituents on $H_2(n_4Por)$ by SnCl₂ in concentrated HCl. Products were separated by chromatography and fully characterized by various spectroscopic methods.

Their second-order non-linear optical properties have been measured by the electric field-induced second-harmonic generation (EFISH) technique [8] giving second-order molecular hyperpolarizability (β) in the range of 10 to 30 x 10⁻³⁰ esu (see table below). The β values of these "push-pull" porphyrins are substantial and are comparable to those of nitro and amino substituted biphenyl and terphenyl compounds. The hyperpolarizabilities, however, are relatively small considering the total size of the π system of porphyrins. This is due to the shape of the π -conjugation of porphyrins. In addition, the dihedral twist of the phenyl groups out of the porphyrin plane may further inhibit efficient intramolecular charge-transfer (ICT) across the porphyrin ring between the donor and acceptor groups.

	Compound (in CHCl ₃)	μ(10 ⁻¹⁸ esu)	β(10 ⁻³⁰ esu)	Compound (in CHCly)	μ(10 ⁻¹⁸ esu)	β(10 ⁻³⁰ esu)
Т	H ₂ N -	1.5°	0.55	VII O2N NH,	5.1	40
1	0 ₂ N -	4.0°	1.9°			
		6.2 ^b 7.8 ^c	9.2 ^b 10 ^c		9	190± 50
V		5.0 7.8°	24 24 ^c	H ₂ (an ₃ Por)		≤10
v		7.6 ^c	16 [°]	$H_2(cis - a_2 \Pi_2 Por)$	7±1	30 ± 10
v		10 ^c	11 ^c	H ₂ (a ₃ nPor)	5±1	20 ± 10

EFISH (λ=	1908 nm)	DATA OF	PUSH-PULL	PORPHYRINS
---------	----	----------	---------	-----------	------------

a. neat b. in acetone c. in NMP

Moderate to strong solvatochromic effects have been observed in several *cis* isomers of "push-pull" porphyrins, $H_2(cis-a_{2}n_2Por)$, $H_2[cis-(Ocda)_{2}n_2Por]$, and $H_2[cis-h_2(Ocdpy)_2Por]$ -(I)₂ [where Ocda = *p*-(N-octadecylamino)phenyl; h = *p*-hydroxyphenyl; Ocdpy = *p*-(N-octadecyl)pyridiniumyl]. This is also an indication of the existence of ICT in these porphyrins.

¹H NMR can detect the non-symmetric ring current on *cis* isomers of "push-pull" porphyrins. The relative polarization of their π -electron density can be ordered as H₂[*cis*-h₂(Ocdpy)₂Por]²⁺ \approx H₂[*cis*-m₂(Mpy)₂Por]²⁺ > H₂[*cis*-(Ocda)₂n₂Por] \approx H₂(*cis*-a₂n₂Por) > H₂(*cis*-h₂py₂Por) \approx H₂(*cis*-m₂py₂Por) > H₂[*cis*-(S-Clprmd)₂n₂Por] - H₂[*cis*-(Ocdmd)₂n₂Por] (where Mpy = *p*-N-methylpyridiniumyl; py = *p*-pyridyl; m = *p*-methoxyphenyl; *s*-Clprmd = *p*-(*s*-2-chloropropinoylamido)phenyl; Ocdmd = *p*-(octadecanoylamido)phenyl].

A wide range of β -active derivatives were prepared from H₂(a_xn_{4-x}Por). Particularly, those with hydrophobic moleties are used in Langmuir-Blodgett films. The isotherms (see figure below) of the first complete set of amphiphilic porphyrins, *i.e.*, H₂[(Ocdmd)_xn_{4-x}Por], with various numbers (*i.e.*, x = 1 to 4) of aliphatic chain substituents were studied [9]. We found that porphyrins with one or two aliphatic substituents adopt a perpendicular orientation to the water surfaced with A₀ (the mean molecular area extrapolated to zero pressure) less than 120 Å²; those with three or four aliphatic substituents have a parallel orientation to the water surface with A₀ > 190 Å². We were successful in aligning the *cis* isomer of "push-pull" porphyrins in a monolayer with a perpendicular orientation to the water surface. The mean molecular area of H₂[*cis*-(Ocdmd)₂n₂Por], H₂[*cis*-(Ocda)₂n₂Por], and H₂[*cis*-h₂(Ocdpy)₂-Por](NO₃)₂ were found to be 112 ± 5, 108 ± 5, and 142 ± 5 Å², respectively, in Langmuir films. Second-order non-linear optical susceptibilities ($\chi^{(2)}$) can be expected from such monolayers.

References

1.

(a)	Collman, J. P.; Halbert, T. R.; Suslick, K. S. in Metal Ion Activation of
	Dioxygen; Spiro, T. G., Ed., Wiley: New York, 1980; Chapter 1.

- (b) Suslick, K. S.; Fox, M. M. J. Am. Chem. Soc. 1983, 105, 3507-3510.
- (c) Suslick, K. S.; Reinert, T. J. J. Chem. Ed. 1985, 62, 974-983.
- (d) Morgan, B.; Dolphin, D. Struct. Bond. 1987, 64, 115-203.

 (a) Cook, B. R.; Reinert, T. J.; Suslick, K. S. J. Am. Chem. Soc. 1986, 108, 7281-8286.

- (b) Groves, J. T.; Neumann, R. J. Am. Chem. Soc. 1989, 111, 2900-2909.
- (c) Suslick, K. S. in Activation and Functionalization of Alkanes; Hill, C. L., Ed., Wiley: New York, 1989, pp. 219-241.
- 3. Lehn, J.-M. Angew. Chem. Int. Ed. Engl. 1988, 27, 89-112.
- 4. (a) Collman, J. P.; McDevitt, J. T.; Leidner, C. R.; Yee, G. T.; Torrance, J. B.; Little, W. A. J. Am. Chem. Soc. 1987, 109, 4606-4614.
 - (b) Hanack, M.; Deger, S.; Lange, A. Coord. Chem. Rev. 1988, 83, 115-136.
 - (c) Marks, T. J. Angew Chem. Int. Ed. Engl. 1990, 29, 857-879.
 - (d) Godfrey, M. R.; Newcomb, T. P.; Hoffman, B. M.; Ibers, J. A. J. Am. Chem. Soc. 1990, 112, 7260-7269.
- 5. (a) Connolly, J. S.; Bolton, J. R. in *Photoinduced Electron Transfer*, Fox, M. A.; Chanon, M., Eds., Elsevier: Amsterdam, 1988, Vol. D, pp 303-393.
 - (b) Gust, D.; Moore, T. A.; Moore, A. L.; Gao, F.; Luttrull, D. K.; DeGraziano, J. M.; Ma, X. C.; Markings, L. R.; Lee, S.-J.; Trier, T. T.; Bittersmann, E.; Seely, G. R.; Woodward, S.; Bensasson, R. V.; Rougee, M.; De Schryvar, F. C.; Van der Auweraer, M. J. Am. Chem. Soc. 1991, 112, 3638-3649.
- 6. (a) Suslick, K. S.; Chen, C.-T. Polym. Mater. Sci. Eng. 1990, 63, 272-276.
 (b) Suslick, K. S.; Chen, C.-T., "One-Dimensional Coordination Polymers," Coord. Chem. Rev., in preparation.
- 7. (a) Prasad, P. N.; Williams, D. J. Introduction to Nonlinear Optical Effects in Molecules and Polymers; Wiley: New York, 1991.
 - (b) Stucky, G. D.; Marder, S. R.; Sohn, J. E., Eds., Materials for Nonlinear Optics; ACS Symposium Series 233; American Chemical Society: Washington, D.C., 1991.
 - (c) Hann, R. A.; Bloor, D., Eds., Organic Materials for Nonlinear Optics II; Royal Society of Chemistry: London, 1991.
 - (d) Eaton, D. F.; Meredith, G. R.; Miller J. S. Adv. Mater. 1992, 4, 45-48.
- 8. Suslick, K. S.; Chen, C.-T.; Meredith, G. R.; Cheng, L.-T., "Push-Pull Porphyrins as Non-linear Optical Materials," J. Am. Chem. Soc. 1992, 114, in press.
- 9. Suslick, K. S.; Chou, H.; Chen, C.-T.; Bohn, P. W.; Stork, K. F., "Langmuir-Blodgett Films of Push-Pull Porphyrins," in preparation.