Studies of the Mechanism of C-O Bond Formation in a Polyoxoanion-Supported Oxairidacyclobutane Complex

Jie Chen

Final Seminar

Olefin oxidation is an important industrial process, and its mechanism has been extensively studied [1]. Oxametallacyclobutane complexes have frequently been invoked as olefin oxidation intermediates since they were first proposed by Sharpless [2]. However, only one such complex, $[(C_8H_{12}O)Ir(\kappa^3O-P_3O_9)]^{2-}$ (2), has ever been synthesized by O₂ oxidation of an olefin complex, namely, $[(C_8H_{12})Ir(\kappa^3O-P_3O_9)]^{2-}$ (1) [3]. In this reaction, oxygen forms a C-O bond selectively with a coordinated olefinic carbon of complex 1 to yield 2. The mechanism of this unique, selective formation of the C-O bond in the oxametallacy-clobutane complex 2, however, is not clear. An intermediate has been observed at low temperatures in the ³¹P NMR spectrum as a set of three multiplets (-12, -14, -21 ppm) in an AMX spin system, and has been proposed to be a bidentate (P₃O₉)³⁻ complex [3].

The goal of this research has been to study the formation mechanism of the oxametallacyclobutane complex 2. The synthesis of cyanoolefin complexes of 1, $[(C_8H_{12})Ir(cyano$ $olefin)(\kappa^2O-P_3O_9)]^2$, which contain bidentate $(P_3O_9)^3$ - ligands [4], was undertaken to verify the previous assignment of the ³¹P NMR spectrum of an intermediate observed during the low temperature O₂ oxidation of 1. The anion $[(C_8H_{12})Ir(CH_2=CHCN)(\kappa^2O-P_3O_9)]^2$ - has the solid-state structure a containing a trigonal bipyramidal iridium center and a bidentate $(P_3O_9)^3$ - ligand. In solution, two isomers are observed, corresponding to metal binding to

different faces of CH₂=CHCN, and are in an equilibrium with 1 and CH₂=CHCN. The ³¹P NMR resonance at -21 ppm is assigned to P₁ in a since an uncoordinated (P₃O₉)³⁻ has a ³¹P NMR resonance at -21 ppm, and the resonances at -12 and -14 ppm are assigned to P₂ and P₃ because tridentate (P₃O₉)³⁻ ligands are known to have chemical shifts in -1 to -14 ppm region [3, 5]. The intermediate that formed upon low temperature oxidation of 1 has ³¹P NMR chemical shifts of -12, -14, and -21 ppm [3]. Therefore, this intermediate is a ($\kappa^2 O$ -P₃O₉)³⁻ complex. Further investigation of the conversion of this intermediate to the oxametallacy-clobutane complex 2 indicates that the intermediate is not an O₂ analogue of the cyanoolefin complexes, [(C₈H₁₂)Ir(η^2 -O₂)($\kappa^2 O$ -P₃O₉)]²⁻. The intermediate converts to 2 without reacting with 1, whereas the O₂ analog requires 1 to form 2.

The allyl complex $[(C_8H_{12})Ir(\kappa^3 O - P_3O_9)(C_3H_5)]^-$ was synthesized from $[(C_8H_{12}) - Ir(\kappa^3 O - P_3O_9)]^{2-}$ and allyl iodide. This complex was prepared in order to examine the equilibrium between tridentate trimetaphosphate coordination and bidentate trimetaphosphate coordination, when both modes are allowed by the 18-electron rule. The resulting Ir(III) complex has the σ -allyl structure **b**, instead of a π -allyl structure containing a bidentate (P_3O_9)^{3-} ligand which requires the replacement of an oxygen ligand (σ -donor) by an olefin group (π -acceptor). However, such a replacement occurs in **a** when the oxidation state of iridium is +1. The high electron density on Ir(I) is delocalized onto the π -acceptor acrylonitrile ligand by back-bonding [6]. Dioxygen, on the other hand, might adopt either η^1 or η^2 coordination mode with a ($\kappa^3 O$ -P_3O_9)^{3-} ligand or a ($\kappa^2 O$ -P_3O_9)^{3-} ligand, respectively, since the competition occurs between two oxygen donors and no preference is predicted.

To gain insight into the C-O bond formation mechanism of the oxametallacyclobutane complex 2, both the reactivity of 2 and alternative routes to 2 have been investigated. Specifically, a unique, reversible conversion of the oxametallacyclobutane complex 2 to the aquo olefin complex $(C_8H_{12})Ir(OH_2)(\kappa^3 O-P_3O_9)$ (3) was discovered. Two possible interconversion pathways have been considered, as shown in Scheme 1: pathway A involves an

iridium oxo intermediate and follows the Sharpless mechanism; pathway B resembles the mechanism of the Wacker process [7]. Low temperature deprotonation of 3 with triethylamine leads to a hydroxide olefin complex, $[(C_8H_{12})Ir(OH)(\kappa^3 O-P_3 O_9)]^-$ (4). This hydroxide complex cannot be further deprotonated by triethylamine to form an iridium(III) oxo complex, $[(C_8H_{12})Ir(O)(\kappa^3 O-P_3 O_9)]^2$. Therefore, pathway A is not followed. This is not surprising since no terminal oxo complexes of d⁶ transition metals are known [8], presumably because π -accepting orbitals are necessary for stabilizing a terminal oxo group [9].

The interconversion between 3 and 4 follows pathway B in Scheme 1. At ambient temperature, the coordinated OH group in 4 attacks a coordinated olefin, resulting in a protonated oxametallacyclobutane complex, $[(C_8H_{12}OH)Ir(\kappa^3 O-P_3O_9)]^{-}$ (5). The hydroxyl proton in this complex can easily be abstracted by triethylamine. The attack of a nucleophilic OH

group on a coordinated olefin resembles the mechanism of the Wacker process where a hydroxide group attacks a coordinated ethylene [7]. Yet it is different from the Wacker process in that the OH group is coordinated, rather than free. Protonation of 2 to form 3 also follows pathway B, as expected by microscopic reversibility.

The C-O bond in the oxametallacyclobutane complex 2 is formed from a nucleophilic coordinated hydroxo ligand and an electrophilic coordinated C=C double bond. This mechanism supports the proposed O₂ oxidation mechanism of $[(C_8H_{12})Ir(\kappa^3 O-P_3 O_9)]^2$ to form the oxametallacyclobutane complex 2 where an iridium μ -oxo dimer intermediate, rather than an iridium terminal oxo intermediate, is involved [3]. Given that the Ir-OH oxygen is sufficiently nucleophilic to attack a coordinated olefin, it is reasonable to expect that the Ir-O-Ir oxygen is also nucleophilic enough to attack a coordinated olefin.

Reference

- 1. (a) Hucknall, D. J. Selective Oxidation of Hydrocarbons; Academic Press: New York, 1974.
 - (b) Sheldon, R. A.; Kochi, J. K. Metal-Catalyzed Oxidations of Organic Compounds; Academic Press: New York, 1981.
- 2. (a) Sharpless, K. B.; Teranishi, A. Y.; Bäckvall, J-E. J. Am. Chem. Soc. 1977, 99, 3120.
 - (b) For a recent review, see: Jørgensen, K. A.; Schiøtt, B. Chem. Rev. 1990, 90, 1483.
- 3. Day, V. W.; Klemperer, W. G.; Lockledge, S. P.; Main, D. J. J. Am. Chem. Soc. 1990, 112, 2031.
- 4. Chen, J.; Day, V. W; Eberspacher, T. A.; Klemperer, W. G. manuscript in preparation.
- 5. (a) Day, V.W.; Klemperer, W. G.; Main, D. J. Inorg. Chem. 1990, 29, 2345.
 (b) Besecker, C. J.; Day, V. W.; Klemperer, W. G. Organometallics, 1985, 3, 564.
- 6. Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 5th ed.; Wiley-Interscience: New York, 1988; Chapter 2, p 58, p 71.
- 7. Bäckvall, J. E.; Åkermark, B.; Ljunggren, S. O. J. Am. Chem. Soc. 1979, 101, 2411.
- 8. Holm, R. H. Chem. Rev. 1987, 87, 1401.
- 9. Mayer, J. M. Comments Inorg. Chem. 1988, 8, 125.