Tetrathiometallates in Synthesis and Catalysis

Daniel Eugene Schwarz

Final Seminar

April 15, 2003

While sulfur is often described as a catalyst poison, most of the remarkable catalysts in industry¹ and in nature² feature metals embedded in a sulfur-rich coordination sphere. Transition metal sulfides are involved in a variety of applications which includes being used as secondary cathodes in Li-TiS₂ batteries³ and as catalysts for major petrochemical processes such as MOS_2 in hydrodesulfurization (HDS) catalysis.¹ A recent and popular theory of the origin of life invokes a key role played by Fe-S and Fe-Ni-S species.⁴ A special class of transition metal sulfides are the tetrathiometallates. They are molecular anions composed of a single metal atom surrounded by a shell of sulfur. This configuration is analogous to the metal sulfides used as catalysts in industry, but they are soluble which allows for a greater range of spectroscopic techniques for characterization.

Chemistry of ReS₄

Rhenium sulfide materials are of interest, as ReS_2 is a one of the best HDS catalysts and Re_2S_7 is a widely used hydrogenation catalyst.⁵ The cyclic voltammogram (CV) of ReS_4 (Figure 1) indicates a strange oxidation event-stripping peak couple separated by more than 1.4 V. When the working electrode (Pt) is held at 500 mV vs. Ag|AgCl in MeCN solutions of ReS_4 , a black compound is deposited upon the electrode. If the electrode is removed, washed, and inserted into fresh MeCN-electrolyte solution, ReS_4^- can be regenerated at a potential of -900 mV vs. Ag|AgCl. This black material can be produced in bulk by electrochemical methods and by chemical oxidants. Both of these products have a Re:S ratio of 1:4, as determined by X-ray energy dispersive spectroscopy. The material was determined to be amorphous by x-ray powder diffraction. Structural information for ReS_4 and Re_2S_7 was obtained by x-ray absorption spectroscopy. Re_2S_7 , another amorphous phase of rhenium sulfide, was previously studied by Hibble et al.⁶ The new ReS_4 material was determined to be disordered with a composition between $\text{Re}(\text{S})_1(\text{S}_2)_{1.5}$ and $\text{Re}(\text{S})_2(\text{S}_2)_1$. Possible structures include a Re_4 rhombohedron (Figure 2) similar to the structure proposed for Re_2S_7 , and linear chains of ReS_4 units.⁷

Figure 1. CV of $Et_4N[ReS_4]$ in MeCN.

Figure 2. Possible Structure of ReS_4 .

In HDS, sulfur removal from the catalyst creates vacant sites for catalysis to occur. In a similar fashion, we are interested in the chemistry that occurs when sulfur is removed from the tetrathiometallates. The reaction of $Et_4N[ReS_4]$ with PMe₃, a sulfur abstraction agent and a good trapping ligand, was investigated. The resulting $Et_4N[Re_2S_4(SH)(PMe_3)_3]$ complex was isolated after one month reaction time. The analogous reaction with one equiv of H_2S produced an immediate conversion to this complex. Further equives of H_2S produced $Re(SH)_2(PMe_3)_4$ and $ReH(SH)_2(PMe_2)_2$.⁸ The interaction of these compounds with small molecules such as H_2 , D_2 , H_2S , and CO was explored. The compound $ReH(SH)_2(PMe_3)_4$ demonstrated an interesting intramolecular exchange of the SH and the hydride which was studied by synthesizing $ReD(SH)_2(PMe_3)_4$ through selective H/D exchange with D_2 at the hydridic position. The only other systems capable of this sort of intramolecular exchange are $Ru(SH)(H)(CO)_2(PPh_3)_2$ and $RuH(SH)(PPh_3)_{3}^9$ however, the hydrides on these species do not exchange with D_2 .

Chemistry of MoS²-

In a set of reactions analogous to the aforementioned ReS_4^- chemistry, $(NH_4)_2[MoS_4]$ was reacted with PMe₃ and produced MoS₂(PMe₃)₄ in high yields.¹⁰ The previously known synthesis of this compound was multi-step and used very specialized reagents.¹¹ The species MoS₂L₄ (L = PR₃, SR₂), which are formal adducts of monomeric MoS₂,¹² are of interest because they could in principle oligomerize to afford polymetallic aggregates, which might exhibit new structural or catalytic properties. This is the case, as MoS₂(PMe₃)₄ reacts with RSH (R = H, Et, C₆H₄CH₃) to produce a family of dinuclear and tetranuclear compounds as shown in the equation below. The compounds range from the coordinatively and electronically unsaturated intermediate Mo₂S₂(SEt)₄(PMe₃)₂₇ to Mo₄S₆(SH)₂(PMe₃)₆ which has a core structure similar to MoS₂.

 $2 \text{ MoS}_2(\text{PMe}_3)_4 + 3 \text{ RSH} \longrightarrow \text{Mo}_2(\text{S})(\text{SH})(\text{SR})_3(\text{PMe}_3)_4 + 3 \text{ H}_2\text{S} + 3 \text{ PMe}_3 + 3 \text{ PMe}_3$ (R = H, Et, p-MeC₆H₄)

The decomposition of H_2S is extremely industrially important. The method currently employed in much of industry is the Claus process which completely oxidizes H_2S to S_8 and H_2O in a very exothermic, stepwise reaction.¹³ A process capable of producing H_2 from H_2S would allow the hydrogen to be recycled back into the reactors, making the process much more economical. Unlike $(NH_4)_2[MOS_4]$, solutions of $(Et_4N)_2[MOS_4]$ with PMe₃ are stable. If H_2S is added, the $MOS_4^{2^2}$ acts as a catalyst to produce H_2 and SPMe₃ with a turnover number (TON) of 25.3 in 2.5 h at 25 °C.¹⁰ This type of catalysis was previously observed for $ReH(SH)_2(PMe_3)_4$, however, at a much slower rate (TON of 21.6 in 329 h).⁸

References

- 1. Topsøe, H.; Clausen, B. S.; Massoth, F. E. Hydrotreating Catalysis, Science and Technology; Springer-Verlag: Berlin, 1996.
- 2. Beinert, H.; Holm, R. H.; Munck, E. "Iron-Sulfur Clusters Nature's Modular, Multipurpose Structures" Science 1997, 277, 653-659.

- 3. Benco, L.; Barras, J.-L.; Atanasov, M.; Daul, C.; Deiss, E. "First Principles Calculation of Electrode Material for Lithium Intercalation Batteries: TiS₂ and LiTi₂S₄ Cubic Spinel Structures" J. Solid State Chem. **1999**, 145, 503-510.
- Huber, C.; Wächtershäuser, G. "Activated Acetic Acid by Carbon Fixation on (Fe,Ni)S Under Primordial Conditions" *Science* 1997, 276, 245-247; Huber, C.; Wächtershäuser, G. "Peptides by Activation of Amino Acids with CO on (Ni,Fe)S Surfaces: Implications for the Origin of Life" *Science* 1998, 281, 670-672.
- 5. Saito, T. "Rhenium Sulfide Cluster Chemistry" J. Chem. Soc., Dalton Trans. 1999, 97-105.
- 6. Hibble, S. J.; Walton, R. I. "X-Ray Absorption Studies of Amorphous Re₂S₇" J. Chem. Soc., Chem. Commun. 1996, 2135-2136.
- Schwarz, D. E.; Frenkel, A. I.; Vairavamurthy, A.; Nuzzo, R. G.; Rauchfuss, T. B. "XANES and EXAFS Analysis of ReS₂, Re₂S₇, and ReS₄", To be submitted for publication.
- Schwarz, D. E.; Dopke, J. A.; Rauchfuss, T. B.; Wilson, S. R. "Re(SH)₂H(PMe₃)₄: a Catalyst for Fundamental Transformations involving H₂ and H₂S" Angew. Chem. Int. Ed. 2001, 40, 2351-2353.
- Jessop, P. G.; Lee, C. L.; Rastar, G.; James, B. R.; Lock, C. J. L.; Faggiani, R. "Hydrido Mercapto and Bis(Mercapto) Derivatives of Ruthenium(II) Phosphine Complexes" *Inorg. Chem.* 1992, 31, 4601-4605; Osakada, K.; Yamamoto, T.; Yamamoto, A. "Preparation and Properties of Ruthenium(II) Mercapto Complex, RuH(SH)(PPh₃)₃•PhCH₃" *Inorg. Chim. Acta* 1984, 90, L5-6.
- Schwarz, D. E.; Rauchfuss, T. B.; Wilson, S. R. "Aggregation of PMe₃-Stabilized Molybdenum Sulfides and the Catalytic Dehydrogenation of H₂S" *Inorg. Chem.* 2003, 42, 2410-2417.
- Murphy, V. J.; Parkin, G. "Syntheses of Mo(PMe₃)₆ and trans-Mo(PMe₃)₄(E)₂ (E = S, Se, Te): The First Series of Terminal Sulfido, Selenido, and Tellurido Complexes of Molybdenum" J. Am. Chem. Soc. 1995, 117, 3522-3528.
- Cotton, F. A.; Schmid, G. "Mononuclear Molybdenum(IV) Complexes with Two Multiply Bonded Chalcogen Ligands in Trans Configuration and Chelating Biphosphine Ligands" *Inorg. Chem.* 1997, 36, 2267-2278; Parkin, G. "Terminal Chalcogenido Complexes of the Transition Metals" *Prog. Inorg. Chem.* 1998, 47, 1-166.
- 13. Pieplu, A.; Saur, O.; Lavalley, J.-C.; Legendre, O.; Nedez, C. "Claus catalysis and H₂S selective oxidation" *Cat. Rev. Sci. Eng.* **1998**, 40, 409-450.

