Mei Shen

 Mei Shen

Contact Information

Department of Chemistry
University of Illinois
64 Roger Adams Laboratory
505 South Mathews Avenue
Urbana, IL 61801
Research Assistant Professor of Chemistry
Visit Website

Biography

Professor Shen received a Ph.D. from University of Texas at Austin under the direction of Prof. Allen J. Bard in 2011. Before joining the University of Illinois at Urbana-Champaign, Mei performed postdoctoral research in the laboratory of Prof. Shigeru Amemiya at University of Pittsburgh (2012), where she successfully imaged the ion flux across a single nanopore in an aqueous environment with nano-resolved Scanning Electrochemical Microscopy (SECM). Her current research interests interface between nanoscience, electrochemistry and neuroscience, specifically involve studying neurotransmission at nanobiological structures, such as single synaptic cleft.

Research Interests

  • nano-electrochemistry, neurotransmitter detection, liquid-liquid interfaces, somatic and synaptic neurotransmission,  scanning electrochemical microscopy

Research Description

The research in the Shen lab interfaces between state of art ultra-high resolution nano-electroanalytical chemistry and neurobiology. The main theme of Shen research program is to interrogate chemical, spatial and temporal heterogeneity in biomaterials using chemically-specific nanosensor probes. Currently our efforts are geared towards detecting neurotransmitter release and uptake in/near the synaptic cleft for both electrochemical active and non-active neurotransmitters. Specifically, we are interested in the following research areas:

Develop nanosensor probes for the multifunctional detection of Neurotransmitters.

Electroanalytical chemistry has been playing a critical role in studying neurotransmission. Non-redox active neurotransmitters, despite their importance in memory and health, remains largely unexplored. This is due to lack of suitable sensor probes for their detection. Our lab is developing novel sensor probes that can be used to detect non-redox active neurotransmitters (such as Acetylcholine) employing multi-disciplinary toolsets such as Nanotechnology, Electrochemistry, Interfacial Chemistry. The detection is based on ion transfer across a nanoscopic interfaces between two immiscible electrolyte solutions (ITIES). Besides, these sensor probes developed in the Shen lab can be used to detect redox active neurotransmitters as well.

Nanometer-resolution imaging of biological processes at single & nano-biostructures.

Studying neurotransmission at single nano-biostructures have been challenges facing scientists for many years. This is due to limitation in available probes and platforms for performing such measurements as well as resolve the technical challenges set by the size of nanostructures, i.e. synaptic cleft typically has size less than 100nm. Our lab is employing nanoITIES electrode sensor probes, and nano-resolution Scanning Electrochemical Microscopy imaging platform, to study neurotransmission at this technically challenging yet biologically critical region, Synaptic Cleft.

Distinctions / Awards

  • NIH-R21 award to Study Exocytosis in the Region of Synaptic Cleft, September 2013-August 2016
  • Professional Development Award at University of Texas at Austin
  • Lochte Fellowship at University of Texas at Austin