Simulation reveals how bacterial organelle converts sunlight to chemical energy

Date

11/14/19
Researchers used supercomputers to construct a 136 million-atom model of the chromatophore, a primitive light-harvesting structure in purple bacteria. The simulated organelle behaved just as it does in nature, the team reports. Graphic-Christopher Maffeo

Scientists have simulated every atom of a light-harvesting structure in a photosynthetic bacterium that generates energy for the organism. The simulated organelle behaves just like its counterpart in nature, the researchers report. The work is a major step toward understanding how some biological structures convert sunlight into chemical energy, a biological innovation that is essential to life.

The researchers report their findings in the journal Cell.

The team originally was led by University of Illinois physics professor Klaus Schulten and continued the work after Schulten’s death in 2016. The study fulfills, in part, Schulten’s decades-long dream of discovering the mechanisms by which atomic-level interactions build and animate living systems.

Schulten decided very early in his career to study photosynthetic systems, said study co-author Melih Sener, a research scientist at the U. of I.’s Beckman Institute for Advanced Science and Technology, where much of the work was conducted. Schulten and Sener modeled the chromatophore, a primitive photosynthetic organelle that produces chemical energy in the form of a molecule known as ATP. That work involved a long-term collaboration with Neil Hunter from the University of Sheffield, who provided much of the experimental data.

“Schulten was a physicist; he wanted to understand biology at the physics level,” said Illinois biochemistry professor and study co-author Emad Tajkhorshid. “But then he realized biology only works if you put all of the complexity into the model. And the only way to do that was with supercomputers.”
 

Computer generated image with research team
The research team included, from left, U. of I. chemistry professor Zaida (Zan) Luthey-Schulten, Beckman Institute research programmer Barry Isralewitz, chemistry professor Taras Pogorelov, physics professor Aleksei Aksimentiev, University of Calgary chemistry professor Peter Tieleman, NCSA senior research programmer Jim Phillips, U. of I. physics postdoctoral researcher Christopher Maffeo, Beckman Institute senior research programmer John Stone and biochemistry professor Emad Tajkhorshid.
Photo by L. Brian Stauffer

 

Over the years, Schulten recruited and supported collaborators at Illinois and elsewhere to help him tackle the challenge. The team constructed a 136 million-atom model of the chromatophore, an effort that required a colossal amount of supercomputer power over a period of four years. The work was conducted on the Titan and Summit supercomputers at the Oak Ridge National Laboratory in Knoxville, Tennessee; and on Blue Waters, housed at the National Center for Supercomputing Applications at the U. of I.

Schulten and his colleagues had already conducted molecular simulations of many of the individual protein and lipid components of the chromatophore, which produces the ATP needed to power a living cell.

“The chromatophore has an antenna, a battery and a motor,” said study lead author Abhishek Singharoy. The antenna harvests light, the battery directs that energy to the motor and the motor cranks out ATP, he said. Singharoy worked with Schulten at Illinois before accepting a professorship at Arizona State University, Tempe in 2017.

Figuring out how the system worked required putting all the parts together, said Illinois physics professor Aleksei Aksimentiev, who guided the project to completion after Schulten’s death. This meant dissecting the chromatophore with every tool available to science, from laboratory experiments to electron microscopy, to programming innovations that broke down the computing challenge into manageable steps, Aksimentiev said.

Once they had a working model of the chromatophore, the researchers watched simulations that revealed how the organelle functioned under different scenarios. They changed the concentration of salt in its environment, for example, to see how it coped with stress.

When they exposed their simulated organelle to conditions that it typically experiences in the cell, they were surprised by how it behaved. It immediately became less spherical, and certain proteins embedded in the membrane began to clump together.

“We started with a perfect sphere, but very rapidly it became imperfect, with flat areas and little areas with high curvatures,” Aksimentiev said. “And all of that, our calculations reveal, has a biological role.”

The clumping proteins create patches of positive and negative charges that facilitate the distribution of electrons across the system, the researchers found. The electrons are ultimately swapped for protons, which drive an enzyme known as an ATP synthase, the motor that produces ATP.

Generated image with Abhishek Singharoy
Study lead author Abhishek Singharoy worked with U. of I. physics professor Klaus Schulten on the study at Illinois. Singharoy is now a professor at Arizona State University.
Photo courtesy Abhishek Singharoy

“The chromatophore’s structure is like a circuit diagram,” Sener said. “If you know how the energy and charges travel in it, you know how the machine works. The chromatophore is basically an electronic device.”

The study confirms that, at the atomic scale, physics drives biology, the researchers said. The work will inform future studies of more complex energy-generating organelles in other microorganisms, and in plants and animals, they said. And it will advance scientists’ understanding of nature’s solution to a perpetual human problem: how to efficiently extract energy from the environment without poisoning oneself.

The research was made possible through the National Institutes of Health Center for Macromolecular Modeling and Bioinformatics and the National Science Foundation Center for the Physics of Living Cells, both at the University of Illinois. The Research Corporation for Science Advancement and the Gordon and Betty More Foundation supported the work in Arizona.

Aksimentiev and Tajkhorshid are affiliates of the Beckman Institute at the U. of I.


Diana Yates  | Life Sciences Editor, U. of I. News Bureau  | 217-333-5802

Related People

zan

pogorelo

Directory

scheelinAlexander
Scheeline
bjmccallBenjamin
McCall
r-gennisRobert
Gennis
j-gerltJohn
Gerlt
sgranickSteve
Granick
mgruebelMartin
Gruebele
hergenroPaul
Hergenrother
huangRaven
Huang
mlkraftMary
Kraft
leckbandDeborah
Leckband
yi-luYi
Lu
martinisSusan
Martinis
snairSatish
Nair
eoldfielEric
Oldfield
rienstraChad
Rienstra
cmsCharles
Schroeder
zanZaida
Luthey-Schulten
sksScott
Silverman
s-sligarStephen
Sligar
tajkhorsEmad
Tajkhorshid
zhao5Huimin
Zhao
pbraunPaul
Braun
mdburkeMartin
Burke
jeffchanJefferson
Chan
sdenmarkScott
Denmark
dlottDana
Dlott
foutAlison
Fout
agewirthAndrew
Gewirth
ggirolamGregory
Girolami
sohirataSo
Hirata
jainPrashant
Jain
jkatzeneJohn
Katzenellenbogen
nmakriNancy
Makri
douglasmDouglas
Mitchell
jsmooreJeffrey
Moore
murphycjCatherine
Murphy
r-nuzzoRalph
Nuzzo
dimerPhilip
Phillips
rauchfuzThomas
Rauchfuss
joaquinrJoaquín
Rodríguez-López
sarlahDavid
Sarlah
kschweizKenneth
Schweizer
jsweedleJonathan
Sweedler
vddonkWilfred
van der Donk
renskeRenske
van der Veen
vuraweisJosh
Vura-Weis
mcwhite7M.
White
sczimmerSteven
Zimmerman
beakPeter
Beak
wklemperWalter
Klemperer
jdmcdonaJ.
McDonald
pogoreloTaras
Pogorelov
mshen233Mei
Shen
dewoonDavid
Woon
wboulangWilliam
Boulanger
rxbRohit
Bhargava
qchen20Qian
Chen
jianjuncJianjun
Cheng
hy66Hong
Yang
andinomaJosé
Andino Martinez
decosteDonald
DeCoste
thhuangTina
Huang
tjhummelThomas
Hummel
dkellDavid
Kell
doctorkMichael
Koerner
marvilleKelly
Marville
crrayChristian
Ray
tlbrownTheodore
Brown
rmcoatesRobert
Coates
thdjrThom
Dunning
dykstraClifford
Dykstra
j-jonasJiri
Jonas
j-lisyJames
Lisy
shapleyJohn
Shapley
pshapleyPatricia
Shapley
zumdahl2Steven
Zumdahl
ksuslickKenneth
Suslick
jcoxJenny
Cox
sqdSean
Drummond
dmillsDouglas
Mills
sheeleySarah
Sheeley
jsmaddenJoseph
Madden
cknight4Connie
Knight
schulzeHeather
Schulze
kbaumgarKeena
Finney
adkssnBeatrice
Adkisson
trabari1Katie
Trabaris
metclfKara
Metcalf
ljohnso2Lori
Johnson
lchenoweLeslie
Chenoweth
wdedoWolali
Dedo
spinnerDavid
Spinner
plblumPatricia
Simpson
stevens2Chad
Stevens
lsagekarLori
Sage-Karlson
bertholdDeborah
Berthold
kecarlsoKathryn
Carlson
sdesmondSerenity
Desmond
axelson2Jordan
Axelson
scbakerStephanie
Baker
pflotschPriscila
Falagan Lotsch
dgrayDanielle
Gray
thennes2Tom
Hennessey
holdaNancy
Holda
aibarrAlejandro
Ibarra
kimshSung Hoon
Kim
kocherg2Nikolai
Kocherginsky
philipk2Philip
Kocheril
legare2Stephanie
Legare
alewandoAgnieszka
Lewandowska
smccombiStuart
McCombie
jdm5Justin
McGlauchlen
egmooreEdwin
Moore
myerscouKathleen
Myerscough
snalla2Siva
Nalla
romanovaElena
Romanova
roubakhiStanislav
Rubakhin
shvedalxAlexander
Shved
asoudaAlexander
Soudakov
xywangXiying
Wang
kwilhelKaren
Wilhelmsen
wilkeyRandy
Wilkey
silongSilong
Zhang
schlembaMary
Schlembach
trimmellAshley
Trimmell
emccarr2Elise
McCarren
cmercierChristen
Mercier
atimpermAaron
Timperman
niesShuming
Nie
hshanHee-Sun
Han
mmgMutha
Gunasekera
kknightsKatriena
Knights
lisawLisa
Williamson
keinckKatie
Einck
kneef1Kate
Neef
park384Joyce
Park
txiang4Tiange
Xiang
e-rogersElizabeth
Rogers
j-hummelJohn
Hummel
i-paulIain
Paul
munjanjaLloyd
Munjanja
glnGayle
Nelsen
agerardAnna
Gerard
powerskaKimberly
Powers
lolshansLisa
Olshansky
miricaLiviu
Mirica
qingcao2Qing
Cao
lisa3Lisa
Johnson
tinalambTina
Lamb
baronpBaron
Peters
bransle2Sarah
Bransley
dylanmh2Dylan
Hamilton
raegansRaegan
Smith
apm8Angad
Mehta
leverittJohn
Leveritt
xingwXing
Wang
emillrEva
Miller
jmill24Jacqueline
Miller
jlbass2Julia
Bass
ramonarRamona
Rudzinski