Researchers discover faster, more efficient way to manufacture multifunctional vascular materials

Date

05/14/21
Synchronized manufacturing of a bioinspired structure with a hierarchical vascular network.

By Samantha Jones Toal


Developing self-healing materials is nothing new for Nancy Sottos, Swanlund Endowed Chair, head of the Department of Materials Science and Engineering, and lead of the Autonomous Materials Systems Group.

Drawing inspiration from biological circulatory systems — such as blood vessels or the leaves on a tree — University of Illinois researchers have worked on developing vascularized structural composites for more than a decade, creating materials that are lightweight and able to self-heal and self-cool.

But now, a team of Beckman researchers led by Sottos and Mayank Garg, postdoctoral research associate and lead author of the newly published Nature Communications paper, “Rapid Synchronized Fabrication of Vascularized Thermosets and Composites,” have shortened a two-day manufacturing process to approximately two minutes by harnessing frontal polymerization of readily available resins.

“For the past several years we’ve been looking for ways to make vascular networks in high-performance materials,” Sottos said. “This is a real breakthrough for making vascular networks in structural materials in a way that saves a lot of time and saves a lot of energy.”

Beckman Institute Director Jeff Moore, a Stanley O. Ikenberry Endowed Chair of chemistry, as well as Bliss Professor of aerospace engineering and Executive Associate Dean of The Grainger College of Engineering Philippe Geubelle were also involved in the project.

Synchronized manufacturing of a bioinspired structure with a hierarchical vascular network. Garg said the simplest way to understand their work is to picture the composition of a leaf with its internal channels and structural networks. Now, imagine that the leaf is made from a tough structural material; inside, fluid flows through different spouts and channels of its interconnected vasculature. In the case of the researchers’ composites, the liquid is capable of a variety of functions, such as cooling or heating in response to extreme environments.

“We want to create these life-like structures, but we also want them to maintain their performance over substantially longer times compared to existing infrastructure by adopting an approach biology uses ubiquitously,” Garg said. “Trees have networks for transporting nutrients and water from the ground against gravity and transporting synthesized food from the leaf to the rest of the tree. The fluids flow in both directions to regulate temperature, grow new material, and repair existing material over the entire lifecycle of the tree. We try to replicate these dynamic functions in a non-biological system.”

However, creating these complex materials has historically been a long, daunting process for the Autonomous Materials Systems Group. In previous research on self-healing materials, researchers needed a hot oven, vacuum, and at least a day to create the composites. The lengthy manufacturing cycle involved curing the host material and subsequently burning or vaporizing a sacrificial template to leave behind hollow, vascular networks. Sottos said the latter process can take 24 hours. The more complicated the vascular network, the more difficult and time-consuming it is to remove.

To create the host materials, scientists opt for frontal polymerization, a reaction-thermal diffusion system that uses the generation and diffusion of heat to promote two different chemical reactions concurrently. The heat is created internally during solidification of the host and surplus heat deconstructs an embedded template in tandem to manufacture the vascular material. This means the researchers are able to shorten the process by combining two steps into one, creating the vascular networks as well as the polymerized host material without an oven. Additionally, the new process enables researchers to have more control in the creation of the networks, meaning the materials could have increased complexity and function in the future.

“With this research, we’ve figured out how to put in vascular networks by using frontal polymerization to drive the vascularization,” Sottos said. “It gets done in minutes now instead of days — and we don’t have to put it in an oven.”

Two processes in one: Tandem polymerization and vascularization allow scientists to create self-healing structural materials in a matter of minutes.Self-healing materials can be beneficial wherever strong materials are essential to maintain function under sustained damage — such as the construction of a skyscraper. But in the case of the researchers, the most likely applications are for planes, spaceships, and even the International Space Station. Sottos explained materials produced in this manner could be commercially manufactured in five to 10 years, though the researchers note that all required materials and processing equipment are currently commercially available.

From a computational standpoint, Geubelle explained that he was able to capture the frontal polymerization and endothermic phase change taking place in the sacrificial templates.

“We performed adaptive, transient, nonlinear finite element analyses to study this competition and determine the conditions under which this simultaneous frontal polymerization and vascularization of the gel can be achieved,” he said. “This technology will lead to a more energy efficient and substantially faster way to create composites with complex microvascular networks.”

Thanks to the team's interdisciplinary discovery, dynamic multifunctional materials are now easier to manufacture than ever before.

“This research is a combination of experimental work as well as computational work,” Garg said. “It requires synchronized communication among team members from various disciplines — chemistry, engineering, and materials science — to overhaul traditional non-sustainable manufacturing strategies.”

“There's nothing better than to see ideas bubble up from students and postdocs in the AMS group resulting from interactions and joint group meetings,” Moore added. “The Moore Group has studied chain unzipping depolymerization reactions for years. I was delighted when I learned that the AMS team recognized how the thermal energy produced in a heat-evolving polymerization reaction could be synced to chain unzipping depolymerization in another material for the purpose of fabricating channels. The first time I saw Mayank's results, I thought to myself, ‘I wish I'd have thought of that idea.’”


Editor’s note: The paper “Spontaneous Patterning during Frontal Polymerization” can be found at https://pubs.acs.org/doi/abs/10.1021/acscentsci.1c00110.

More information about frontal polymerization research at Beckman Institute can be found at https://fpcure.beckman.illinois.edu/vascularization/.

 

Related People

jsmoore

Directory

scheelinAlexander
Scheeline
bjmccallBenjamin
McCall
r-gennisRobert
Gennis
j-gerltJohn
Gerlt
sgranickSteve
Granick
mgruebelMartin
Gruebele
hergenroPaul
Hergenrother
huangRaven
Huang
mlkraftMary
Kraft
leckbandDeborah
Leckband
yi-luYi
Lu
martinisSusan
Martinis
snairSatish
Nair
eoldfielEric
Oldfield
cmsCharles
Schroeder
zanZaida
Luthey-Schulten
selvinPaul
Selvin
sksScott
Silverman
s-sligarStephen
Sligar
tajkhorsEmad
Tajkhorshid
zhao5Huimin
Zhao
pbraunPaul
Braun
mdburkeMartin
Burke
jeffchanJefferson
Chan
sdenmarkScott
Denmark
dlottDana
Dlott
foutAlison
Fout
agewirthAndrew
Gewirth
ggirolamGregory
Girolami
sohirataSo
Hirata
jainPrashant
Jain
jkatzeneJohn
Katzenellenbogen
nmakriNancy
Makri
douglasmDouglas
Mitchell
jsmooreJeffrey
Moore
murphycjCatherine
Murphy
r-nuzzoRalph
Nuzzo
dimerPhilip
Phillips
rauchfuzThomas
Rauchfuss
joaquinrJoaquín
Rodríguez-López
sarlahDavid
Sarlah
kschweizKenneth
Schweizer
jsweedleJonathan
Sweedler
vddonkWilfred
van der Donk
renskeRenske
van der Veen
vuraweisJosh
Vura-Weis
mcwhite7M.
White
sczimmerSteven
Zimmerman
beakPeter
Beak
wklemperWalter
Klemperer
jdmcdonaJ.
McDonald
pogoreloTaras
Pogorelov
mshen233Mei
Shen
dewoonDavid
Woon
wboulangWilliam
Boulanger
rxbRohit
Bhargava
qchen20Qian
Chen
jianjuncJianjun
Cheng
hy66Hong
Yang
andinomaJosé
Andino Martinez
decosteDonald
DeCoste
thhuangTina
Huang
tjhummelThomas
Hummel
dkellDavid
Kell
doctorkMichael
Koerner
marvilleKelly
Marville
crrayChristian
Ray
tlbrownTheodore
Brown
rmcoatesRobert
Coates
thdjrThom
Dunning
dykstraClifford
Dykstra
j-jonasJiri
Jonas
j-lisyJames
Lisy
shapleyJohn
Shapley
pshapleyPatricia
Shapley
zumdahl2Steven
Zumdahl
ksuslickKenneth
Suslick
jcoxJenny
Cox
sqdSean
Drummond
sheeleySarah
Sheeley
jsmaddenJoseph
Madden
cknight4Connie
Knight
schulzeHeather
Schulze
kbaumgarKeena
Finney
adkssnBeatrice
Adkisson
trabari1Katie
Trabaris
metclfKara
Metcalf
ljohnso2Lori
Johnson
lchenoweLeslie
Chenoweth
wdedoWolali
Dedo
spinnerDavid
Spinner
plblumPatricia
Simpson
stevens2Chad
Stevens
lsagekarLori
Sage-Karlson
bertholdDeborah
Berthold
kecarlsoKathryn
Carlson
sdesmondSerenity
Desmond
axelson2Jordan
Axelson
scbakerStephanie
Baker
pflotschPriscila
Falagan Lotsch
dgrayDanielle
Gray
thennes2Tom
Hennessey
holdaNancy
Holda
aibarrAlejandro
Ibarra
kimshSung Hoon
Kim
kocherg2Nikolai
Kocherginsky
philipk2Philip
Kocheril
legare2Stephanie
Legare
alewandoAgnieszka
Lewandowska
smccombiStuart
McCombie
jdm5Justin
McGlauchlen
egmooreEdwin
Moore
myerscouKathleen
Myerscough
snalla2Siva
Nalla
romanovaElena
Romanova
roubakhiStanislav
Rubakhin
shvedalxAlexander
Shved
asoudaAlexander
Soudakov
xywangXiying
Wang
kwilhelKaren
Wilhelmsen
wilkeyRandy
Wilkey
silongSilong
Zhang
schlembaMary
Schlembach
trimmellAshley
Trimmell
emccarr2Elise
McCarren
cmercierChristen
Mercier
atimpermAaron
Timperman
niesShuming
Nie
hshanHee-Sun
Han
mmgMutha
Gunasekera
kknightsKatriena
Knights
lisawLisa
Williamson
keinckKatie
Einck
kneef1Kate
Neef
txiang4Tiange
Xiang
j-hummelJohn
Hummel
i-paulIain
Paul
munjanjaLloyd
Munjanja
glnGayle
Nelsen
agerardAnna
Gerard
powerskaKimberly
Powers
lolshansLisa
Olshansky
miricaLiviu
Mirica
qingcao2Qing
Cao
lisa3Lisa
Johnson
tinalambTina
Lamb
baronpBaron
Peters
bransle2Sarah
Bransley
dylanmh2Dylan
Hamilton
raegansRaegan
Smith
apm8Angad
Mehta
leverittJohn
Leveritt
xingwXing
Wang
emillrEva
Miller
jmill24Jacqueline
Miller
jlbass2Julia
Bass
ramonarRamona
Rudzinski
tlcraneTracy
Crane
cejohnstCelia
Johnston
adlAmber
LaBau
cnsolomoCandice
Solomon-Strutz
mikaelbMikael
Backlund
jacksonnNick
Jackson