Scientists simulate a step in hepatitis B viral infection at unprecedented atomic level

Date

09/06/21

By Tejas Mahadevan Padmanabhan


With up to 2.4 million U.S. cases and over 250 million chronic cases globally, hepatitis B infection persists despite the availability of a vaccine. Vaccines work by immunizing the body against a virus to prevent infection; however, there is no cure for individuals who do become infected (for example, at birth). Hepatitis B infection can lead to liver damage and even cancer, posing a threat to public health.

Understanding the fundamental steps of viral infection can help design drugs to interrupt these processes and prevent chronic infection. With this rationale, researchers from the Beckman Institute and the Department of Chemistry modeled the process of capsid disassembly of the hepatitis B virus at an unprecedented atomic level.

The team included Zhaleh Ghaemi, the study's lead author and a research scientist in chemistry; Emad Tajkhorshid, a professor of biochemistry; and Martin Gruebele, a professor of chemistry. Their paper, titled “ Molecular mechanism of capsid disassembly in hepatitis B virus,” is published in PNAS.

A viral capsid is a structure that contains a virus’s genetic material; in the case of hepatitis B, the capsid is an icosahedral structure about 36 nanometers in diameter and composed of 240 identical proteins. Capsid disassembly, wherein the capsid physically breaks apart, is essential for a virus to infect a cell, as it allows the virus to release its own genetic material into the host cell's nucleus and eventually use the host cell’s replication machinery to multiply. Understanding this process on an atomic level is imperative for one therapeutic approach to combat hepatitis B and other similar infections.

A hepatitis B viral capsid is an icosahedral structure composed of 240 identical proteins. Photo courtesy of the Tajkorshid lab.“Over the past few decades, the developments of advanced simulation software such as NAMD, developed here at UIUC, and a more accurate treatment of interactions between atoms, enabled us to simulate a system of this size and complexity,” Ghaemi said.

“A novel aspect of this work is the development and application of a method that allowed us to perturb the capsid efficiently,” said Tajkorshid, who directs the NIH Biotechnology Center for Macromolecular Modeling and Bioinformatics. “Five to ten years ago, we had neither the computational power nor an appropriate method to carry out this sort of work.”

Armed with cutting-edge computational capabilities, the team pried apart the hepatitis B viral capsid disassembly process.

“On the experimental side, it’s a situation where you can’t have your cake and eat it too. You can do microscopy experiments, but there is always a trade-off. There are experiments that will give you partial insights. Some will give you higher spatial resolution, some better time resolution, but there isn’t an experiment like these simulations that we did which will just show you what happens, atom by atom,” Gruebele said.

Using newly developed computational techniques to apply mechanical stress, the researchers identified which areas of the capsid impact the disassembly process. Surprisingly, specific regions of the capsid protein were found to contribute to the breakage more than others, and not in the pattern that had previously been surmised based on mechanical properties alone.

By probing and investigating capsid disassembly, which was set to efficiently occur in just a few nanoseconds of simulation, the team predicted that the first cracks that lead to disassembly are a result of the capsid structure expanding by just 2.5%.

This high level of accuracy would not be possible with many techniques available today.

“The work here is based on simulations, but we can confirm the simulations with experiments that involve mutating specific amino acids predicted to be ‘hot spots’ for disassembly,” Ghaemi said.

The unique expertise contributed by each team member was vital in developing the method, simulating the process, and predicting phenomena with staggering precision. The methods developed for this study will equip today’s scientists to advance their fields—from virology to bioinformatics to physics.

“The beautiful thing about this paper is that different parts will have excitement for different types of people depending on whether you are a physicist or a biomedical researcher,” Gruebele said.

“Tools like this equip us with a computational microscope by which we can watch complex molecular motions and phenomena at an extremely high resolution that cannot be yet achieved otherwise,” Tajkhorshid said.

Editor's note: the paper associated with this work can be found at: https://www.pnas.org/content/118/36/e2102530118 

Head shots of, from left, Emad Tajkorshid, Zhaleh Ghaemi, and Martin Gruebele, with illustrations of the hepatitus B virus in background
From left, Emad Tajkorshid, Zhaleh Ghaemi, and Martin Gruebele. Photo courtesy of the Tajkorshid lab.

Related People

mgruebel

Directory

scheelinAlexander
Scheeline
bjmccallBenjamin
McCall
r-gennisRobert
Gennis
j-gerltJohn
Gerlt
sgranickSteve
Granick
mgruebelMartin
Gruebele
hergenroPaul
Hergenrother
huangRaven
Huang
mlkraftMary
Kraft
leckbandDeborah
Leckband
yi-luYi
Lu
martinisSusan
Martinis
snairSatish
Nair
eoldfielEric
Oldfield
cmsCharles
Schroeder
zanZaida
Luthey-Schulten
selvinPaul
Selvin
sksScott
Silverman
s-sligarStephen
Sligar
tajkhorsEmad
Tajkhorshid
zhao5Huimin
Zhao
pbraunPaul
Braun
mdburkeMartin
Burke
jeffchanJefferson
Chan
sdenmarkScott
Denmark
dlottDana
Dlott
foutAlison
Fout
agewirthAndrew
Gewirth
ggirolamGregory
Girolami
sohirataSo
Hirata
jainPrashant
Jain
jkatzeneJohn
Katzenellenbogen
nmakriNancy
Makri
douglasmDouglas
Mitchell
jsmooreJeffrey
Moore
murphycjCatherine
Murphy
r-nuzzoRalph
Nuzzo
dimerPhilip
Phillips
rauchfuzThomas
Rauchfuss
joaquinrJoaquín
Rodríguez-López
sarlahDavid
Sarlah
kschweizKenneth
Schweizer
jsweedleJonathan
Sweedler
vddonkWilfred
van der Donk
renskeRenske
van der Veen
vuraweisJosh
Vura-Weis
mcwhite7M.
White
sczimmerSteven
Zimmerman
beakPeter
Beak
wklemperWalter
Klemperer
jdmcdonaJ.
McDonald
pogoreloTaras
Pogorelov
mshen233Mei
Shen
dewoonDavid
Woon
wboulangWilliam
Boulanger
rxbRohit
Bhargava
qchen20Qian
Chen
jianjuncJianjun
Cheng
hy66Hong
Yang
andinomaJosé
Andino Martinez
decosteDonald
DeCoste
thhuangTina
Huang
tjhummelThomas
Hummel
dkellDavid
Kell
doctorkMichael
Koerner
marvilleKelly
Marville
crrayChristian
Ray
tlbrownTheodore
Brown
rmcoatesRobert
Coates
thdjrThom
Dunning
dykstraClifford
Dykstra
j-jonasJiri
Jonas
j-lisyJames
Lisy
shapleyJohn
Shapley
pshapleyPatricia
Shapley
zumdahl2Steven
Zumdahl
ksuslickKenneth
Suslick
jcoxJenny
Cox
sqdSean
Drummond
sheeleySarah
Sheeley
jsmaddenJoseph
Madden
cknight4Connie
Knight
schulzeHeather
Schulze
kbaumgarKeena
Finney
adkssnBeatrice
Adkisson
trabari1Katie
Trabaris
metclfKara
Metcalf
ljohnso2Lori
Johnson
lchenoweLeslie
Chenoweth
wdedoWolali
Dedo
spinnerDavid
Spinner
plblumPatricia
Simpson
stevens2Chad
Stevens
lsagekarLori
Sage-Karlson
bertholdDeborah
Berthold
kecarlsoKathryn
Carlson
sdesmondSerenity
Desmond
axelson2Jordan
Axelson
scbakerStephanie
Baker
pflotschPriscila
Falagan Lotsch
dgrayDanielle
Gray
thennes2Tom
Hennessey
holdaNancy
Holda
aibarrAlejandro
Ibarra
kimshSung Hoon
Kim
kocherg2Nikolai
Kocherginsky
philipk2Philip
Kocheril
legare2Stephanie
Legare
alewandoAgnieszka
Lewandowska
smccombiStuart
McCombie
jdm5Justin
McGlauchlen
egmooreEdwin
Moore
myerscouKathleen
Myerscough
snalla2Siva
Nalla
romanovaElena
Romanova
roubakhiStanislav
Rubakhin
shvedalxAlexander
Shved
asoudaAlexander
Soudakov
xywangXiying
Wang
kwilhelKaren
Wilhelmsen
wilkeyRandy
Wilkey
silongSilong
Zhang
schlembaMary
Schlembach
trimmellAshley
Trimmell
emccarr2Elise
McCarren
cmercierChristen
Mercier
atimpermAaron
Timperman
niesShuming
Nie
hshanHee-Sun
Han
mmgMutha
Gunasekera
kknightsKatriena
Knights
lisawLisa
Williamson
keinckKatie
Einck
kneef1Kate
Neef
txiang4Tiange
Xiang
j-hummelJohn
Hummel
i-paulIain
Paul
munjanjaLloyd
Munjanja
glnGayle
Nelsen
agerardAnna
Gerard
powerskaKimberly
Powers
lolshansLisa
Olshansky
miricaLiviu
Mirica
qingcao2Qing
Cao
lisa3Lisa
Johnson
tinalambTina
Lamb
baronpBaron
Peters
bransle2Sarah
Bransley
dylanmh2Dylan
Hamilton
raegansRaegan
Smith
apm8Angad
Mehta
leverittJohn
Leveritt
xingwXing
Wang
emillrEva
Miller
jmill24Jacqueline
Miller
jlbass2Julia
Bass
ramonarRamona
Rudzinski
tlcraneTracy
Crane
cejohnstCelia
Johnston
adlAmber
LaBau
cnsolomoCandice
Solomon-Strutz
mikaelbMikael
Backlund
jacksonnNick
Jackson