New molecule sets stage for nickel as a “greener” photocatalyst, reveals key steps in reaction process

Date

03/30/22
Professor Liviu Mirica (above) and postdoctoral researcher Hanah Na (below) have developed a new ligand that promotes a direct nickel-photocatalyzed cross-coupling reaction.

By Tracy Crane, Department of Chemistry


In recent years, the golden word in precious metals is palladium.

A crucial component in automobile catalytic converters and in emerging hydrogen fuel cell technology, the demand for this rare silvery white transition metal continues to outstrip supply, driving its price per ounce far above gold and silver.

Palladium and other rare, costly precious metals like platinum, iridium, and ruthenium, are also crucial in chemical transformations, specifically transition metal catalysis, which has become an indispensable tool for putting together complex molecules in the development of pharmaceutical drugs, polymers, and other useful chemicals.

The scarcity and expense of these precious metals has created a need to develop catalysts from transition metals that are more abundant and generally cheaper, like nickel, a cousin of palladium.

As a result, the last decade has seen a dramatic expansion of new catalytic bond-forming transformations involving nickel.

Portrait of Hanah Na standing in front of a tall grass and a pond.

“We know from the literature that nickel complexes are extremely useful in performing some transformations, maybe better than other transition metals out there,” said Liviu Mirica, William H. and Janet G. Lycan Professor of Chemistry at the University of Illinois at Urbana-Champaign. “People have gotten very good at optimizing conditions for specific transformations, so we are slowly getting to where nickel could rival palladium in these transformations.”

More recently, scientists have been focusing on developing nickel catalysts that can be directly photoinitiated by light, which Mirica said has proven to be a very successful area of research producing reactions that have not been previously possible.

However, they still require the use of an additional photocatalyst – typically based on precious metals such as iridium or ruthenium that are even more expensive than palladium.

In a paper recently published in Nature Communications, Mirica and postdoctoral researcher Hanah Na report their work on the development of a completely novel tridentate ligand that coordinates with nickel to create a catalyst that can be directly activated by light to form a carbon-oxygen bond without the use of an additional photocatalyst. C-O bonds are prevalent in many natural products, pharmaceuticals, and agrochemicals.

The paper, “Deciphering the mechanism of the Ni-photocatalyzed C‒O cross-coupling reaction using a tridentate pyridinophane ligand,” can be accessed at https://doi.org/10.1038/s41467-022-28948-8.

Mirica and Na believe their new class of tridentate pyridinophane ligands (RN3) can lead to the development of new nickel catalysts and are a practical platform for detailed mechanical studies of other nickel-catalyzed chemical reactions.

“It is a competent catalyst and on top of it, it can actually do this photocatalysis by itself, it doesn’t require these other photocatalysts,” Mirica said. “It opens up many avenues of research that we think could be used for many additional applications.”

These tridentate pyridinophane ligands (RN3) build on previous work by Mirica, who had already developed a novel four-pronged molecule known as a tetradentate ligand, whose structure resembles the pocket of a baseball glove. This ligand structure promoted rapid C-C bond forming reactivity while also stabilizing the higher oxidation states of nickel.

“It’s very stable. But all of those intermediates over the past decade have been way too stable. They’re not competent in catalytic applications,” Mirica said. 

Then there is the bidentate ligand framework bipyridyl that most chemists are using in nickel photocatalytic processes, which provides enhanced reactivity and the ability to adjust optimization to get the desired reaction.

“It’s great for catalytic chemistry but you can’t isolate or see these special nickel species,” Mirica said.

Graphic showing the various ligands.
This graphic shows the tridentate pyridinophane ligand (center) recently developed by Mirica and Na in comparison to the bidentate bipyridines ligand (left) that most chemists are currently using in nickel photocatalytic processes and the tetradentate pyridinophanes ligand (right) previously developed by Mirica.

Typically, Mirica explained, classic organic chemists have a particular chemical transformation in mind and try whatever catalysts they think will be good, and whatever conditions or additives would be useful and optimize it, focusing on a very specific transformation.

“We have a slightly different approach: a metallo-centric approach and in this case nickel is the metal of interest,” he said. “I am interested in being able to design, isolate, characterize nickel complexes with different coordination numbers, different ligand environments, and in different oxidation states, which ultimately will dictate their reactivity.”

This latest ligand structure is somewhere between the other two.

“We open up a coordination site, we open up that nickel center, by removing one of the four nitrogens, to allow other things to bind to it and eventually it allows you to do catalytic activity, but still be able to isolate and characterize intermediates,” he said.

Their novel tridentate ligand enabled them to reveal for the first time the key reaction steps and intermediate species in this catalytic cycle. An in-depth mechanistic understanding of Ni-mediated photocatalysis is essential for rational reaction design and optimization of the nickel-mediated chemical process, the researchers explain in the report.

Their mechanistic study employed techniques including Nuclear Magnetic Resonance (NMR), electron paramagnetic resonance (EPR), in situ infrared (IR) spectroscopy and electrochemical and photophysical measurements, and computational studies.

From a mechanical perspective, the photocatalytic cycle is well-understood, but the Ni-mediated redox cycle has remained a mystery. Paramagnetic Ni(I) and Ni(III) species are assumed to be part of the process, but have not been thoroughly investigated, and the key catalytic steps of oxidative addition, trans-metalation, and reductive elimination at the nickel centers have never been directly observed.

In the past several decades, Na explained, visible light-mediated photoredox catalysis has made vital contributions in the field of synthetic organic chemistryTraditionally, developing new methodologies and reaction condition optimization are often achieved by trial and error rather than being based on a thorough understanding of the underlying reaction mechanism.

Na said this might be because understanding of the underlying chemistry requires a major contribution from the inorganic and organometallic chemistry fields (beyond the scope of the research interests in synthetic organic chemistry), including the synthesis and characterization of related metal complexes and study of their photochemistry and photophysics.

"As inorganic and organometallic chemists, we want to contribute to this emerging research field, mostly focusing on unraveling clues to understand underlying reaction mechanisms – which is not much done by organic chemists," Na said. "We believe that our work would provide crucial insight into the reaction design and search for new chemical transformations in the burgeoning field of photoredox catalysis, and thus can impact both the organic and inorganic chemistry community."

The goal, Mirica explained, is to unleash new reactivity that could ultimately be helpful to organic chemists, who could then employ this system and use it for very particular synthetic targets.

“They may not work now as well as the finely optimized or finely tuned systems that people use on a daily basis in an organic lab, but we hope that our new Ni catalysts will be commonly used several years down the line,” Mirica said.

This research in the news: 

DOI: https://doi.org/10.1038/s41467-022-28948-8

Contact Liviu M. Mirica at mirica@illinois.edu

Related People

mirica

Directory

scheelinAlexander
Scheeline
bjmccallBenjamin
McCall
r-gennisRobert
Gennis
j-gerltJohn
Gerlt
sgranickSteve
Granick
mgruebelMartin
Gruebele
hergenroPaul
Hergenrother
huangRaven
Huang
mlkraftMary
Kraft
leckbandDeborah
Leckband
yi-luYi
Lu
martinisSusan
Martinis
snairSatish
Nair
eoldfielEric
Oldfield
cmsCharles
Schroeder
zanZaida
Luthey-Schulten
selvinPaul
Selvin
sksScott
Silverman
s-sligarStephen
Sligar
tajkhorsEmad
Tajkhorshid
zhao5Huimin
Zhao
pbraunPaul
Braun
mdburkeMartin
Burke
jeffchanJefferson
Chan
sdenmarkScott
Denmark
dlottDana
Dlott
foutAlison
Fout
agewirthAndrew
Gewirth
ggirolamGregory
Girolami
sohirataSo
Hirata
jainPrashant
Jain
jkatzeneJohn
Katzenellenbogen
nmakriNancy
Makri
douglasmDouglas
Mitchell
jsmooreJeffrey
Moore
murphycjCatherine
Murphy
r-nuzzoRalph
Nuzzo
dimerPhilip
Phillips
rauchfuzThomas
Rauchfuss
joaquinrJoaquín
Rodríguez-López
sarlahDavid
Sarlah
kschweizKenneth
Schweizer
jsweedleJonathan
Sweedler
vddonkWilfred
van der Donk
renskeRenske
van der Veen
vuraweisJosh
Vura-Weis
mcwhite7M.
White
sczimmerSteven
Zimmerman
beakPeter
Beak
wklemperWalter
Klemperer
jdmcdonaJ.
McDonald
pogoreloTaras
Pogorelov
mshen233Mei
Shen
dewoonDavid
Woon
wboulangWilliam
Boulanger
rxbRohit
Bhargava
qchen20Qian
Chen
jianjuncJianjun
Cheng
hy66Hong
Yang
andinomaJosé
Andino Martinez
decosteDonald
DeCoste
thhuangTina
Huang
tjhummelThomas
Hummel
dkellDavid
Kell
doctorkMichael
Koerner
marvilleKelly
Marville
crrayChristian
Ray
tlbrownTheodore
Brown
rmcoatesRobert
Coates
thdjrThom
Dunning
dykstraClifford
Dykstra
j-jonasJiri
Jonas
j-lisyJames
Lisy
shapleyJohn
Shapley
pshapleyPatricia
Shapley
zumdahl2Steven
Zumdahl
ksuslickKenneth
Suslick
jcoxJenny
Cox
sqdSean
Drummond
sheeleySarah
Sheeley
jsmaddenJoseph
Madden
cknight4Connie
Knight
schulzeHeather
Schulze
kbaumgarKeena
Finney
adkssnBeatrice
Adkisson
trabari1Katie
Trabaris
metclfKara
Metcalf
ljohnso2Lori
Johnson
lchenoweLeslie
Chenoweth
wdedoWolali
Dedo
spinnerDavid
Spinner
plblumPatricia
Simpson
stevens2Chad
Stevens
lsagekarLori
Sage-Karlson
bertholdDeborah
Berthold
kecarlsoKathryn
Carlson
sdesmondSerenity
Desmond
axelson2Jordan
Axelson
scbakerStephanie
Baker
pflotschPriscila
Falagan Lotsch
dgrayDanielle
Gray
thennes2Tom
Hennessey
holdaNancy
Holda
aibarrAlejandro
Ibarra
kimshSung Hoon
Kim
kocherg2Nikolai
Kocherginsky
philipk2Philip
Kocheril
legare2Stephanie
Legare
alewandoAgnieszka
Lewandowska
smccombiStuart
McCombie
jdm5Justin
McGlauchlen
egmooreEdwin
Moore
myerscouKathleen
Myerscough
snalla2Siva
Nalla
romanovaElena
Romanova
roubakhiStanislav
Rubakhin
shvedalxAlexander
Shved
asoudaAlexander
Soudakov
xywangXiying
Wang
kwilhelKaren
Wilhelmsen
wilkeyRandy
Wilkey
silongSilong
Zhang
schlembaMary
Schlembach
trimmellAshley
Trimmell
emccarr2Elise
McCarren
cmercierChristen
Mercier
atimpermAaron
Timperman
niesShuming
Nie
hshanHee-Sun
Han
mmgMutha
Gunasekera
kknightsKatriena
Knights
lisawLisa
Williamson
keinckKatie
Einck
kneef1Kate
Neef
txiang4Tiange
Xiang
j-hummelJohn
Hummel
i-paulIain
Paul
munjanjaLloyd
Munjanja
glnGayle
Nelsen
agerardAnna
Gerard
powerskaKimberly
Powers
lolshansLisa
Olshansky
miricaLiviu
Mirica
qingcao2Qing
Cao
lisa3Lisa
Johnson
tinalambTina
Lamb
baronpBaron
Peters
bransle2Sarah
Bransley
dylanmh2Dylan
Hamilton
raegansRaegan
Smith
apm8Angad
Mehta
leverittJohn
Leveritt
xingwXing
Wang
emillrEva
Miller
jmill24Jacqueline
Miller
jlbass2Julia
Bass
ramonarRamona
Rudzinski
tlcraneTracy
Crane
cejohnstCelia
Johnston
adlAmber
LaBau
cnsolomoCandice
Solomon-Strutz
mikaelbMikael
Backlund
jacksonnNick
Jackson