Research could enable assembly line synthesis of prevalent amine-containing drugs

Date
04/15/22

CHAMPAIGN, Ill. – An Illinois research team has discovered a way to produce a special class of molecule that could open the door for new drugs to treat currently untreatable diseases.

Open the household medicine cabinet and you will likely find organic derivatives of ammonia, called amines. They are one of the most prevalent structures found in medicines today. More than 40 percent of drugs and drug candidates contain amines, and 60 percent of those amines are tertiary, so named for the three carbons that are bonded to a nitrogen.

Tertiary amines are found in some of the most impactful human medicines, including antibiotics, breast cancer and leukemia drugs, opioid pain medications, antihistamines, blood thinners, HIV treatments, antimigraine medications and more. They increase a drug’s solubility and can trigger its key biological functions.

Despite the prevalence of this special class of molecules in medicines today, much of the functional potential of tertiary amines likely remains untapped.

That’s because the traditional process of making them requires specific, controlled conditions that inherently limit the discovery of new tertiary amines, which could potentially treat a wide range of currently untreatable diseases.

Now, an Illinois research team led by Lycan Professor of Chemistry M. Christina White and graduate students Siraj Ali, Brenna Budaitis, and Devon Fontaine have discovered a new chemical reaction, a carbon-hydrogen amination cross-coupling reaction, that creates a faster, simpler way of making tertiary amines without the inherent limitations of classic methods. The researchers believe this could also be used to discover new reactions with nitrogen.

Group picture of the researchers with Christina White seated at table and others standing in front of chalk board with the reaction drawn on the board.
Professor M. Christina White (front), along with, from left, Brenna Budaitis, Siraj Ali, and Devon Fontaine discovered a reaction that provides a simple, rapid way of making tertiary amines. Timing is key to the reaction with a slow release of amines. Photo credit: White research group.

This new reaction in the chemist’s toolbox transforms the traditional tertiary amine building process – with its classic chemical reactions that require highly-specialized conditions specific to each molecule -- into a procedure that can be carried out in general conditions open to air and moisture with the potential for automation.

As the researchers describe in their paper in Science (DOI:10.1126/science.abn8382), this new procedure uses a metal catalyst discovered by their group (Ma-WhiteSOX/palladium) and two building blocks— abundant hydrocarbons (olefins containing adjacent C—H bond) and secondary amines— to generate a variety of tertiary amines.

This has the potential, White explained, for chemists to take a lot of different secondary amines and couple them to a lot of different olefins, both of which you can either buy or easily make.

“And these are stable starting materials. You could have them in individual containers, mix and match them, and using our catalyst make many different combinations of tertiary amines,” White said. “The flexibility of this reaction makes the discovery process for tertiary amine drugs easier.”

The difference between classical reactions and this new reaction for making tertiary amines is like the difference between picking a specialty sandwich from a menu versus creating your own sandwich from a diverse set of ingredients – you have a lot more flexibility in terms of choices. 

This highly flexible system for making tertiary amines is also very practical.

“You could, in principle, run it on your stove top,” White explains. “You don’t need to handle it with a lot of precautions, you can run it open to air and you don’t have to exclude water. You just need your starting materials, the palladium/SOX catalyst and a little heat. It should work just the way we are doing it in the lab.”

White explained that when a pharmaceutical company wants to make tertiary amines, they often have to use specialized procedures, but this reaction allows you to take two simple, often commercial, starting materials and put them together using the same procedure.

“Because the conditions are so simple and work for so many different amines and olefins there is great potential to adopt this reaction for automation,” White said.

The major challenge the team overcame in this discovery was solving a long-standing problem in C—H functionalization chemistry: replacing a hydrogen atom on a molecule’s carbon framework with a basic, secondary amine to directly make tertiary amines.

Metal catalysts prefer interacting with basic amines rather than the C—H bonds in the olefin. The team hypothesized that amine salts (amine-BF3 salts that are easy to use and store) can prevent this interaction with the catalyst.

Graphic displaying the chemical equations central to the research

Like a dam modulating the flow of water, the team’s palladium/SOX catalyst regulates the slow release of amines from the salts as well as mediates coupling the secondary amine and hydrocarbon to form the tertiary amine product.

Showcasing the power of this new chemical reaction, the researchers made 81 tertiary amines in their study, coupling a wide range of complex, medicinally relevant secondary amines to many complex olefins containing reactive functionality. This includes functionality that is reactive with secondary amines in the traditional tertiary amine manufacturing processes.

Further demonstrating the potential to discover new medicines, the research team also applied this new reaction to the efficient syntheses of 12 existing drug compounds, including Abilify, an anti-psychotic medication, Naftin, an anti-fungal, as well as 11 complex drug derivatives, including the anti-depressants, Paxil and Prozac, and the blood-thinner, Plavix.

In addition to this reaction being used in the pharmaceutical industry as a platform to expedite the discovery of new tertiary amine drugs, the researchers also believe that their catalyst-controlled slow-release strategy could be used by other researchers to discover many additional new reactions with nitrogen.

— Tracy Crane, Communications Specialist, Department of Chemistry

 

This research in the news: 

Editor’s notes

To reach M. Christina White, email mcwhite7@illinois.edu.
To reach Siraj Ali, email szali2@illinois.edu.
To reach Brenna Budaitis, email budaiti2@illinois.edu.
To reach Devon Fontaine, email dff2@illinois.edu.

The paper “Allylic C–H amination cross-coupling furnishes tertiary amines by electrophilic metal catalysis” is available online. DOI: 10.1126/science.abn8382

Related People

mcwhite7

Directory

scheelinAlexander
Scheeline
bjmccallBenjamin
McCall
r-gennisRobert
Gennis
j-gerltJohn
Gerlt
sgranickSteve
Granick
mgruebelMartin
Gruebele
hergenroPaul
Hergenrother
huangRaven
Huang
mlkraftMary
Kraft
leckbandDeborah
Leckband
yi-luYi
Lu
martinisSusan
Martinis
snairSatish
Nair
eoldfielEric
Oldfield
cmsCharles
Schroeder
zanZaida
Luthey-Schulten
selvinPaul
Selvin
sksScott
Silverman
s-sligarStephen
Sligar
tajkhorsEmad
Tajkhorshid
zhao5Huimin
Zhao
pbraunPaul
Braun
mdburkeMartin
Burke
jeffchanJefferson
Chan
sdenmarkScott
Denmark
dlottDana
Dlott
foutAlison
Fout
agewirthAndrew
Gewirth
ggirolamGregory
Girolami
sohirataSo
Hirata
jainPrashant
Jain
jkatzeneJohn
Katzenellenbogen
nmakriNancy
Makri
douglasmDouglas
Mitchell
jsmooreJeffrey
Moore
murphycjCatherine
Murphy
r-nuzzoRalph
Nuzzo
dimerPhilip
Phillips
rauchfuzThomas
Rauchfuss
joaquinrJoaquín
Rodríguez-López
sarlahDavid
Sarlah
kschweizKenneth
Schweizer
jsweedleJonathan
Sweedler
vddonkWilfred
van der Donk
renskeRenske
van der Veen
vuraweisJosh
Vura-Weis
mcwhite7M.
White
sczimmerSteven
Zimmerman
beakPeter
Beak
wklemperWalter
Klemperer
jdmcdonaJ.
McDonald
pogoreloTaras
Pogorelov
mshen233Mei
Shen
dewoonDavid
Woon
wboulangWilliam
Boulanger
rxbRohit
Bhargava
qchen20Qian
Chen
jianjuncJianjun
Cheng
hy66Hong
Yang
andinomaJosé
Andino Martinez
decosteDonald
DeCoste
thhuangTina
Huang
tjhummelThomas
Hummel
dkellDavid
Kell
doctorkMichael
Koerner
marvilleKelly
Marville
crrayChristian
Ray
tlbrownTheodore
Brown
rmcoatesRobert
Coates
thdjrThom
Dunning
dykstraClifford
Dykstra
j-jonasJiri
Jonas
j-lisyJames
Lisy
shapleyJohn
Shapley
pshapleyPatricia
Shapley
zumdahl2Steven
Zumdahl
ksuslickKenneth
Suslick
jcoxJenny
Cox
sqdSean
Drummond
sheeleySarah
Sheeley
jsmaddenJoseph
Madden
cknight4Connie
Knight
schulzeHeather
Schulze
kbaumgarKeena
Finney
adkssnBeatrice
Adkisson
trabari1Katie
Trabaris
metclfKara
Metcalf
ljohnso2Lori
Johnson
lchenoweLeslie
Chenoweth
wdedoWolali
Dedo
spinnerDavid
Spinner
plblumPatricia
Simpson
stevens2Chad
Stevens
lsagekarLori
Sage-Karlson
bertholdDeborah
Berthold
kecarlsoKathryn
Carlson
sdesmondSerenity
Desmond
axelson2Jordan
Axelson
scbakerStephanie
Baker
pflotschPriscila
Falagan Lotsch
dgrayDanielle
Gray
thennes2Tom
Hennessey
holdaNancy
Holda
aibarrAlejandro
Ibarra
kimshSung Hoon
Kim
kocherg2Nikolai
Kocherginsky
philipk2Philip
Kocheril
legare2Stephanie
Legare
alewandoAgnieszka
Lewandowska
smccombiStuart
McCombie
jdm5Justin
McGlauchlen
egmooreEdwin
Moore
myerscouKathleen
Myerscough
snalla2Siva
Nalla
romanovaElena
Romanova
roubakhiStanislav
Rubakhin
shvedalxAlexander
Shved
asoudaAlexander
Soudakov
xywangXiying
Wang
kwilhelKaren
Wilhelmsen
wilkeyRandy
Wilkey
silongSilong
Zhang
schlembaMary
Schlembach
trimmellAshley
Trimmell
emccarr2Elise
McCarren
cmercierChristen
Mercier
atimpermAaron
Timperman
niesShuming
Nie
hshanHee-Sun
Han
mmgMutha
Gunasekera
kknightsKatriena
Knights
lisawLisa
Williamson
keinckKatie
Einck
kneef1Kate
Neef
txiang4Tiange
Xiang
j-hummelJohn
Hummel
i-paulIain
Paul
munjanjaLloyd
Munjanja
glnGayle
Nelsen
agerardAnna
Gerard
powerskaKimberly
Powers
lolshansLisa
Olshansky
miricaLiviu
Mirica
qingcao2Qing
Cao
lisa3Lisa
Johnson
tinalambTina
Lamb
baronpBaron
Peters
bransle2Sarah
Bransley
dylanmh2Dylan
Hamilton
raegansRaegan
Smith
apm8Angad
Mehta
leverittJohn
Leveritt
xingwXing
Wang
emillrEva
Miller
jmill24Jacqueline
Miller
jlbass2Julia
Bass
ramonarRamona
Rudzinski
tlcraneTracy
Crane
cejohnstCelia
Johnston
adlAmber
LaBau
cnsolomoCandice
Solomon-Strutz
mikaelbMikael
Backlund
jacksonnNick
Jackson