Jonathan V. Sweedler

 Jonathan Sweedler

Contact Information

Department of Chemistry
University of Illinois
71 RAL, Box 63-5
600 South Mathews Avenue
Urbana, IL 61801
James R. Eiszner Family Endowed Chair in Chemistry and Director, School of Chemical Sciences
View CV - Visit Website

Additional Campus Affiliations

Biography

Professor Sweedler received his B.S. degree in Chemistry from the University of California at Davis in 1983, and his Ph.D. from the University of Arizona in 1989. Thereafter, he was an NSF Postdoctoral Fellow at Stanford University before joining the faculty at Illinois in 1991. His research interests are in bioanalytical chemistry, and focus on developing new methods for assaying the chemistry occurring in nanoliter-volume samples, and applying these analytical methods to characterize the molecular forms, distribution, and dynamic release of neurotransmitters and neuropeptides from a range of animal models. Professor Sweedler is Editor-in-Chief of the journal Analytical Chemistry.

Research Interests

  • analytical neurochemistry, more specifically, studies on cell to cell signaling pathways involved in learning, memory, and behavior, as well as conserved aspects of neurotransmission across the metazoan; dynamic studies of subcellar neurotransmitter distribution and release, ultra-trace peptide analysis

Research Description

We develop a variety of analytical measurement methodologies, including microfluidic/nanofluidic sampling, capillary electrophoresis separations, and mass spectrometry characterization. These technologies combine to form metabolomics and peptidomics workflows, with much of our efforts directed toward scaling these methods to nanoliter and smaller volume levels. We are currently developing a range of mass spectrometry imaging approaches that allow thousands of individual cells to be characterized for their neuropeptide content, and a unique capillary electrophoresis approach that allows us to sample the cytoplasm for a selected neuron or glia and characterize its metabolome. Many of these measurement capabilities are unique and not currently available elsewhere.

We use these approaches to study cell-to-cell signaling in the central nervous system to uncover novel neurochemical pathways. Because neurotransmitters and neuromodulators are so well conserved across the entire animal kingdom, we work with a wide variety of animal models, from mollusks to insects to vertebrates. We use new peptidomic and metabolomic approaches—many developed by us—to characterize these signaling molecules in samples ranging from a single cell to entire brain regions.

Why are we interested in these neuromodulatory compounds? Because of the important roles they play in behavior, learning, and memory. Cell-to-cell communication in the brain relies upon a surprising array of molecules, from gaseous molecules (e.g., nitric oxide) to classical transmitters (e.g., glutamate), as well as unexpected molecules (e.g., d-serine), and a range of peptides. We study these to understand how networks of neurons and associated supporting cells such as glia can work together to confer emergent properties that give rise to behavior and memory. Specific queries address what molecules are present in specific cells and networks, and how they change based on network activity, animal behavior, or even on exposure to drugs.

Neuropeptides are perhaps the most diverse category of neuromodulators. Using a suite of mass spectrometry-based approaches, we have characterized the neuropeptides and prohormones in the sea slug, honey bee, urchin, planarian, songbird, and in several mammals. Literally hundreds of new prohormones and even more putative neuropeptides have been discovered, and the bioactivity of several of these novel neuropeptides characterized.

In addition to the research described above, a number of collaborative projects are undertaken through the UIUC Neuroproteomics and Neurometabolomics Center on Cell-Cell Signaling and the Center for Nutrition Learning and Memory.

Distinctions / Awards

  • ANACHEM Award, Federation of Analytical and Spectroscopy Societies
  • Malcom E. Pruitt Award, Council for Chemical Research
  • The Analytical Chemistry Award, The American Chemical Society
  • Ralph N. Adams Award, The Pittsburgh Conference
  • Fellow of the American Chemical Society
  • Viktor Mutt Prize, International Regulatory Peptide Society
  • Theophilus Redwood Lecturer, Royal Society of Chemistry

Selected Publications

Journal Articles

Jansson, E. T, T. J. Comi, S. S. Rubakhin, and J. V. Sweedler Single Cell Peptide Heterogeneity of Rat Islets of Langerhans ACS Chem. Biol. 11 2016, p. 2588-2595.
Aerts, J. T, K. R. Louis, S. R. Crandall, G. Govindaiah, C. L. Cox, and J. V. Sweedler Patch Clamp Electrophysiology and Capillary Electrophoresis–Mass Spectrometry Metabolomics for Single Cell Characterization Anal. Chem. 86 2014, p. 3203–3208.
Wang, T. A, Y. V. Yu, G. Govindaiah, X. Ye, L. Artinian, T. P. Coleman, and J. V. Sweedler Circadian Rhythm of Redox State Regulates Excitability in Suprachiasmatic Nucleus Neurons Science 337 2012, p. 839–842.
Hummon, A. B, T. A. Richmond, P. Verleyen, G. Baggerman, J. Huybrechts, M. A. Ewing, E. Vierstraete, S. L. Rodriguez-Zas, L. Schoofs, G. E. Robinson, and J. V. Sweedler From the Genome to the Proteome: Uncovering Peptides in the Apis Brain Science 314 2006, p. 647–649.
Rubakhin, S. S, R. W. Garden, R. R. Fuller, and J. V. Sweedler Measuring the Peptides in Individual Organelles with MALDI Mass Spectrometry Nat. Biotechnol. 18 2000, p. 172–175.

In The News