Christina White's Group Developed a New Catalyst Based on the Metal Manganese that is Both Highly Reactive and Highly Selective

Date

10/01/15

Chemists have long believed that inserting nitrogen – a beneficial ingredient for making many pharmaceuticals and other biologically active molecules – into a carbon-hydrogen bond requires a trade-off between catalyst reactivity and selectivity. But a new manganese-based catalyst developed by University of Illinois chemists has given researchers both in one efficient, lower-cost package.

Led by Illinois chemistry professor M. Christina White, the research team published its work in the journal Nature Chemistry. The catalyst will be available commercially this fall from Sigma-Aldrich (product number 799688).

“Nitrogen is ubiquitous in pharmaceuticals and molecules that come from nature that have very potent biological activities,” White said. “The reaction we report allows chemists to take natural products and drug candidates containing alcohols and convert a carbon-hydrogen bond, three carbons away from the alcohol, to a nitrogen. Reactions that convert carbon-hydrogen bonds to carbon-nitrogen bonds could transform the solubility or biological properties of a molecule and enable accelerated drug discovery.”

Catalysts for these types of reactions based on precious metals, such as rhodium, are reactive but not very selective, which means they could react in places other than the target. Iron-based catalysts, a past achievement of White’s lab, are highly selective, precisely inserting the nitrogen, but are less reactive, only reacting with weaker types of bonds.

“It is commonly accepted that reactivity and selectivity will be inversely correlated, particularly when it comes to difficult transformations like carbon-hydrogen bond functionalization,” White said. “It’s like the difference between using a powerwasher and using a dentist’s water pick. As you become more selective, more targeted, you may become less powerful. As you get more forceful and powerful, you lose the ability to be fine-tuned.

“We have discovered a catalyst that challenges this reactivity-selectivity paradigm,” White said.

Although precious metals have been long revered for their predictable and controlled chemical reactivity, White’s group explores the properties of metals found abundantly in the Earth’s crust, which are less-documented and considered difficult to tame. After considering the distinct mechanisms of both rhodium-based catalysts and iron-based catalysts, the researchers hypothesized that manganese may fall somewhere in the middle, leading to a blending of reactivity and selectivity. However, what they found instead was that the manganese-based catalyst was very reactive – even more than rhodium – while maintaining the high degree of selectivity found in iron catalysts.

“What makes this catalyst really special is that it takes the best parts of the two catalyst families that existed and it combines them into one,” said graduate student Jennifer Griffin, a co-first author of the paper along with graduate student Shauna Paradine, now a postdoctoral researcher at Harvard University. “I’ve always thought of reactivity and selectivity in carbon-hydrogen catalysis as two mutually exclusive properties. Now, by looking at these different metals, we find that it doesn’t have to be separate. You can have both.”

Manganese also holds several advantages over rhodium and other precious metals, the researchers said. It is 10 million times more abundant than rhodium, so using it for large-scale pharmaceutical production is much more cost-effective. In addition, manganese is much less toxic. It is found in enzymes throughout the body and is used as an ingredient in multivitamins. This suggests that any pharmaceuticals or compounds made with the catalyst can have higher concentrations of the catalyst left in it, with less need for costly and lengthy purification.

“It really showcases the importance of exploring these types of metals in hopes of replacing precious metals that are more expensive,” Griffin said. “It’s exciting, looking forward to what other kinds of catalysts can be developed for other types of processes.”

The researchers hope that the combination of high reactivity and high selectivity will be a boon to other chemists working to identify and synthesize new drug candidates. A subtle tweak in the molecule’s structure or functionality by adding nitrogen or another functional group in a position that wasn’t accessible before could dramatically change the way that molecule works in the body by affecting how it interacts with other molecules or its solubility.

“In the area of medicinal chemistry, you can image that with a very selective, reactive catalyst you can put nitrogen into various sites on a molecule, which opens up a whole new area of functionality to explore,” said Jinpeng Zhao, a graduate student and co-author of the paper. “It changes the way people can modify bioactive molecules and gives new possibilities of adding function to molecules found in nature.”

For example, White’s group demonstrated its ability to alter drug candidates by chemically modifying a potential antibiotic molecule, dihydroplueromutilone, using a combination of its previously developed iron catalyst to install oxygen and the new manganese catalyst to install nitrogen.

The researchers will continue to explore earth metals for catalyzing other reactions at carbon-hydrogen bonds, opening the door to even more avenues of drug development. They also will explore other manganese-based catalyst systems to develop intermolecular reactions that do not rely on having a nearby alcohol group.

“Ultimately our goal is to develop a suite of highly reactive and selective catalysts that enable you to precisely add oxygen, nitrogen and carbon to every type of carbon-hydrogen bond in a complex molecule setting,” White said.

The National Institutes of Health supported this work.

Excerpted from UIUC's News Bureau original article, author Liz Ahlberg
C&EN article

University of Illinois chemists led by professor Christina White (center) developed a new catalyst based on the metal manganese that is both highly reactive and highly selective, traits previously thought to be inversive. Graduate students, from left: Shauna Paradine, Shannon Miller, Jinpeng Zhao, Aaron Petronico and Jennifer Griffin.

Photo by L. Brian Stauffer

 

Related People

Directory

scheelinAlexander
Scheeline
bjmccallBenjamin
McCall
cmartn10Calgary
Martin
r-gennisRobert
Gennis
j-gerltJohn
Gerlt
sgranickSteve
Granick
mgruebelMartin
Gruebele
hergenroPaul
Hergenrother
huangRaven
Huang
mlkraftMary
Kraft
leckbandDeborah
Leckband
yi-luYi
Lu
martinisSusan
Martinis
snairSatish
Nair
eoldfielEric
Oldfield
rienstraChad
Rienstra
cmsCharles
Schroeder
zanZaida
Luthey-Schulten
sksScott
Silverman
s-sligarStephen
Sligar
zhao5Huimin
Zhao
mselfba2Michelle
Self-Ballard
pbraunPaul
Braun
mdburkeMartin
Burke
jeffchanJefferson
Chan
sdenmarkScott
Denmark
dlottDana
Dlott
foutAlison
Fout
agewirthAndrew
Gewirth
ggirolamGregory
Girolami
shs3Sharon
Hammes-Schiffer
sohirataSo
Hirata
kamihullKami
Hull
jainPrashant
Jain
jkatzeneJohn
Katzenellenbogen
nmakriNancy
Makri
douglasmDouglas
Mitchell
jsmooreJeffrey
Moore
murphycjCatherine
Murphy
r-nuzzoRalph
Nuzzo
dimerPhilip
Phillips
rauchfuzThomas
Rauchfuss
joaquinrJoaquín
Rodríguez-López
jrogersJohn
Rogers
sarlahDavid
Sarlah
kschweizKenneth
Schweizer
jsweedleJonathan
Sweedler
vddonkWilfred
van der Donk
renskeRenske
van der Veen
vuraweisJosh
Vura-Weis
mcwhite7M.
White
sczimmerSteven
Zimmerman
beakPeter
Beak
wklemperWalter
Klemperer
jdmcdonaJ.
McDonald
mvp11Michael
Pak
pogoreloTaras
Pogorelov
mshen233Mei
Shen
dewoonDavid
Woon
wboulangWilliam
Boulanger
rxbRohit
Bhargava
qchen20Qian
Chen
jianjuncJianjun
Cheng
hy66Hong
Yang
andinomaJosé
Andino Martinez
decosteDonald
DeCoste
thhuangTina
Huang
tjhummelThomas
Hummel
dkellDavid
Kell
doctorkMichael
Koerner
marvilleKelly
Marville
crrayChristian
Ray
tlbrownTheodore
Brown
rmcoatesRobert
Coates
thdjrThom
Dunning,
dykstraClifford
Dykstra
j-jonasJiri
Jonas
j-lisyJames
Lisy
shapleyJohn
Shapley
pshapleyPatricia
Shapley
awieckowAndrzej
Wieckowski
zumdahl2Steven
Zumdahl
ksuslickKenneth
Suslick
jlbearJodi
Bear
jcoxJenny
Cox
ealthausEllen
Althaus
staciryStaci
Ryan
sqdSean
Drummond
dmillsDouglas
Mills
sheeleySarah
Sheeley
jsmaddenJoseph
Madden
cknight4Connie
Knight
schulzeHeather
Schulze
slangleySamantha
Langley
ssmurrayStar
Murray
kbaumgarKeena
Finney
adkssnBeatrice
Adkisson
bmylerBeth
Myler
trabari1Katie
Trabaris
kewatsonKaren
Watson
strussTheresa
Struss
metclfKara
Metcalf
ljohnso2Lori
Johnson
jlwJamison
Lowe
jenruslJennifer
Russell
lchenoweLeslie
Chenoweth
jcfJonathan
Freiman
wdedoWolali
Dedo
ebielserElaina
Kutz
spinnerDavid
Spinner
plblumPatricia
Simpson
stevens2Chad
Stevens
lsagekarLori
Sage-Karlson
bertholdDeborah
Berthold
kecarlsoKathryn
Carlson
tlchen4Timothy
Chen
sdesmondSerenity
Desmond
angelaecAngela
Crawford
hsahmed3Hajira
Ahmed
kakinsKenye
Akins
asali3Arzeena
Ali
axelson2Jordan
Axelson
bai11Yugang
Bai
scbakerStephanie
Baker
duffin2Kevin
Duffin
duttadDebapriya
Dutta
pflotschPriscila
Falagan Lotsch
iflemingIan
Fleming
dgrayDanielle
Gray
thennes2Thomas
Hennessey
mhettingMary Jo
Hettinger
holdaNancy
Holda
holler2Jordan
Holler
aibarrAlejandro
Ibarra
kimshSung Hoon
Kim
kocherg2Nikolai
Kocherginsky
philipk2Philip
Kocheril
dlee106David
Lee
legare2Stephanie
Legare
alewandoAgnieszka
Lewandowska
qianliliQianli
Li
bdmccallBirgit
McCall
smccombiStuart
McCombie
jdm5Justin
McGlauchlen
egmooreEdwin
Moore
myerscouKathleen
Myerscough
snalla2Siva
Nalla
oraham2Aaron
Oraham
lah5LeeAnn
Pannebaker
poonawa2Maria
Poonawalla
rrollerR.
Roller
romanovaElena
Romanova
roubakhiStanislav
Rubakhin
vsfVictoria
Shepherd-Fortner
shvedalxAlexander
Shved
asoudaAlexander
Soudakov
ktsween2Kalee
Sweeney
sktarterSamantha
Tarter
aathoma2Andy
Thomas
kwilhelKaren
Wilhelmsen
wilkeyRandy
Wilkey
luxu3Lu
Xu
yuanyao4Yuan
Yao
silongSilong
Zhang
schlembaMary
Schlembach
emccarr2Elise
McCarren
cmercierChristen
Mercier
atimpermAaron
Timperman
niesShuming
Nie
hshanHee-Sun
Han
mmgMutha
Gunasekera