Team uses MRI to image epigenetics in the brain

Date

02/28/22

By Diana Yates, Life Sciences Editor, U. of I. News Bureau


A multidisciplinary team at the University of Illinois Urbana-Champaign that includes chemistry professor Scott Silverman has devised a new approach to 3D imaging that captures DNA methylation, a key epigenetic change associated with learning in the brain. The scientists say their proof-of-concept study in pigs will easily translate to humans, as the new method relies on standard MRI technology and biological markers already in use in human medicine.

Epigenetics is a key mechanism by which gene expression is regulated. The new approach – called epigenetic MRI, or eMRI – will open up new avenues of research into how such changes mold the brain, allowing it to grow, learn and respond to stress, the researchers said. The technique also may be useful in the study of neurodegenerative processes like Alzheimer’s disease.

DNA methylation is one mechanism that cells use to regulate which genes are actively expressed, said Dr. King Li, a professor in the Carle Illinois College of Medicine at the U. of I. who led the research with U. of I. bioengineering professor Fan Lam and Gene Robinson, the director of the Carl R. Woese Institute for Genomic Biology at Illinois.

“Our DNA is the same from cell to cell and it doesn’t change,” Li said. “But tiny molecules, like methyl groups, are attached to the DNA backbone to regulate which genes are actively being transcribed into RNAs and translated into proteins. DNA methylation is a very important part of the control of gene functions.”

Lam worked with Silverman to develop a method to distinguish between methylated DNA and other methylated molecules in the brain.

Previous research showed that DNA methylation is one of several epigenetic changes that occur in the brain when an animal responds to its environment, said Robinson, a professor of entomology at Illinois who studies the interplay of genomics, experience and behavior in honey bees. His studies have shown that many genes in the brain are upregulated or downregulated in bees as they mature, change roles in the hive, encounter new food sources or respond to threats.

Researchers pose, some standing and some sitting, together in front of two blue MRI banners.
Scientists at the University of Illinois Urbana-Champaign developed a method to noninvasively image DNA methylation, allowing new explorations of the mechanisms that regulate gene expression in the brain. The team includes, from left, chemistry professor Scott Silverman; entomology professor Gene Robinson, the director of the Carl R. Woese Institute for Genomic Biology; bioengineering professor Fan Lam; animal sciences professor Ryan Dilger; and electrical and computer engineering professor Zhi-Pei Liang. Photo by L. Brian Stauffer

There are two control systems in the brain, operating at different time scales, Robinson said. Neurons and other brain cells respond to environmental cues within seconds or milliseconds, while changes in gene expression take longer. For example, when a honey bee experiences a threat, it must take action immediately. It relies on neurons to rapidly fire and allow it to act defensively. But the bee’s brain continues to respond even after the threat has lapsed, preparing itself for a potential future threat with changes in gene expression.

“We’re focusing on this second control system, the molecular control system, which relies on gene expression,” Robinson said. “These changes can take minutes to occur, but can last for hours, days or even longer.”

Scientists have been unable to precisely capture the molecular changes that take place in the living brain over time. Earlier epigenetic studies of honey bees and other organisms required the removal of brain tissue or that the animal be dissected for analysis. A previous research effort in the human brain imaged an enzyme involved in regulating one epigenetic change but did not target the epigenetic change directly. The Illinois team wanted to use the power of MRI to directly image epigenetic changes in live subjects.

For the new approach, the team relied on a key insight: Li realized that an essential amino acid, methionine, could carry an atomic marker known as carbon-13 into the brain, where it could donate the carbon-13-labeled methyl group needed for DNA methylation. This process would mark the DNA with a rare isotope of carbon. Carbon-13 occurs naturally in the body, but its sister isotope, carbon-12, is much more abundant, Li said. About 99% of the carbon in living tissues is carbon-12, he said.

Methionine must be obtained through the diet, so the team decided to test the idea that feeding the carbon-13-labeled methionine to study subjects would allow it to pass into the brain and label those regions undergoing methylation.

“When we started this project, we thought it might fail,” Lam said. “But the potential was so exciting that we had to try.”

Previous studies had already shown that MRI can image carbon-13, and orally administered carbon-13 has been in use in human subjects for decades. But the carbon-13 signal from living animals is weak, so Lam and U. of I. electrical and computer engineering professor Zhi-Pei Liang relied on their expertise in MRI and MR spectroscopy to significantly enhance the eMRI signal.

The team first tried the method in rodents, then switched to working in piglets, whose larger brains are more like human brains. For this, they relied on the expertise of co-author Ryan Dilger, a professor of animal sciences at Illinois who studies the factors that influence neurodevelopment in pigs.

“This project is highly multidisciplinary,” Lam said. “We have on the team engineers, imaging and radiology experts, and people with very strong backgrounds in clinical applications. We also have scientists with expertise in nutrition science, animal science, chemistry and genomics.”

In the experiments in piglets fed a diet that included carbon-13-labeled methionine, the researchers found that MRI could detect an increasing signal from carbon-13-labeled methyl groups in the brain. Further analyses allowed them to differentiate methyl groups on DNA from other methylated molecules.

The piglets had more new DNA methylation in the brain a few weeks after birth than they did at birth, and the increase was much greater than expected based on changes in size alone.

“This finding is very encouraging because it reflects what we expect to see if this signal is environmentally responsive,” Li said. “It is known from animal studies that brain regions that are most involved in learning and memory experience more epigenetic changes. There also were regional differences in DNA methylation across the pig brain, just like there are regional differences in classical MRI studies.

“We now expect to apply this technique in humans. Getting this label into the brain is easy and does no harm to the body. We’ll give it to people through the diet and then we can detect the signal.”

Their first application of the approach will likely occur in studies comparing the brains of people with and without neurodegenerative disease, he said.

This research in the news:

Editor’s notes

To reach Fan Lam, email fanlam1@illinois.edu.

To reach King Li, email kingli@illinois.edu.

To reach Gene Robinson, email generobi@illinois.edu.

The paper “Epigenetic MRI: Noninvasive imaging of DNA methylation in the brain” is available online and from the U. of I. News Bureau.

DOI: 10.1073/pnas.2119891119      

Ryan Dilger, Fan Lam, King Li, Zhi-Pei Liang and Gene Robinson are affiliates of the Beckman Institute for Advanced Science and Technology at the U. of I. Lam also is a professor of electrical and computer engineering, Li also is a professor of computer science, and Liang also is a professor of bioengineering at Illinois. Dilger also is a professor in the Center for Digital Agriculture and in the National Center for Supercomputing Applications at the U. of I.

The Carle Illinois College of Medicine, the Beckman Institute for Advanced Science and Technology, and the Illinois Sociogenomics Initiative funded this research.

Related People

sks

Directory

scheelinAlexander
Scheeline
bjmccallBenjamin
McCall
r-gennisRobert
Gennis
j-gerltJohn
Gerlt
sgranickSteve
Granick
mgruebelMartin
Gruebele
hergenroPaul
Hergenrother
huangRaven
Huang
mlkraftMary
Kraft
leckbandDeborah
Leckband
yi-luYi
Lu
martinisSusan
Martinis
snairSatish
Nair
eoldfielEric
Oldfield
cmsCharles
Schroeder
zanZaida
Luthey-Schulten
selvinPaul
Selvin
sksScott
Silverman
s-sligarStephen
Sligar
tajkhorsEmad
Tajkhorshid
zhao5Huimin
Zhao
pbraunPaul
Braun
mdburkeMartin
Burke
jeffchanJefferson
Chan
sdenmarkScott
Denmark
dlottDana
Dlott
foutAlison
Fout
agewirthAndrew
Gewirth
ggirolamGregory
Girolami
sohirataSo
Hirata
jainPrashant
Jain
jkatzeneJohn
Katzenellenbogen
nmakriNancy
Makri
douglasmDouglas
Mitchell
jsmooreJeffrey
Moore
murphycjCatherine
Murphy
r-nuzzoRalph
Nuzzo
dimerPhilip
Phillips
rauchfuzThomas
Rauchfuss
joaquinrJoaquín
Rodríguez-López
sarlahDavid
Sarlah
kschweizKenneth
Schweizer
jsweedleJonathan
Sweedler
vddonkWilfred
van der Donk
renskeRenske
van der Veen
vuraweisJosh
Vura-Weis
mcwhite7M.
White
sczimmerSteven
Zimmerman
beakPeter
Beak
wklemperWalter
Klemperer
jdmcdonaJ.
McDonald
pogoreloTaras
Pogorelov
mshen233Mei
Shen
dewoonDavid
Woon
wboulangWilliam
Boulanger
rxbRohit
Bhargava
qchen20Qian
Chen
jianjuncJianjun
Cheng
hy66Hong
Yang
andinomaJosé
Andino Martinez
decosteDonald
DeCoste
thhuangTina
Huang
tjhummelThomas
Hummel
dkellDavid
Kell
doctorkMichael
Koerner
marvilleKelly
Marville
crrayChristian
Ray
tlbrownTheodore
Brown
rmcoatesRobert
Coates
thdjrThom
Dunning
dykstraClifford
Dykstra
j-jonasJiri
Jonas
j-lisyJames
Lisy
shapleyJohn
Shapley
pshapleyPatricia
Shapley
zumdahl2Steven
Zumdahl
ksuslickKenneth
Suslick
jcoxJenny
Cox
sqdSean
Drummond
sheeleySarah
Sheeley
jsmaddenJoseph
Madden
cknight4Connie
Knight
schulzeHeather
Schulze
kbaumgarKeena
Finney
adkssnBeatrice
Adkisson
trabari1Katie
Trabaris
metclfKara
Metcalf
ljohnso2Lori
Johnson
lchenoweLeslie
Chenoweth
wdedoWolali
Dedo
spinnerDavid
Spinner
plblumPatricia
Simpson
stevens2Chad
Stevens
lsagekarLori
Sage-Karlson
bertholdDeborah
Berthold
kecarlsoKathryn
Carlson
sdesmondSerenity
Desmond
axelson2Jordan
Axelson
scbakerStephanie
Baker
pflotschPriscila
Falagan Lotsch
dgrayDanielle
Gray
thennes2Tom
Hennessey
holdaNancy
Holda
aibarrAlejandro
Ibarra
kimshSung Hoon
Kim
kocherg2Nikolai
Kocherginsky
philipk2Philip
Kocheril
legare2Stephanie
Legare
alewandoAgnieszka
Lewandowska
smccombiStuart
McCombie
jdm5Justin
McGlauchlen
egmooreEdwin
Moore
myerscouKathleen
Myerscough
snalla2Siva
Nalla
romanovaElena
Romanova
roubakhiStanislav
Rubakhin
shvedalxAlexander
Shved
asoudaAlexander
Soudakov
xywangXiying
Wang
kwilhelKaren
Wilhelmsen
wilkeyRandy
Wilkey
silongSilong
Zhang
schlembaMary
Schlembach
trimmellAshley
Trimmell
emccarr2Elise
McCarren
cmercierChristen
Mercier
atimpermAaron
Timperman
niesShuming
Nie
hshanHee-Sun
Han
mmgMutha
Gunasekera
kknightsKatriena
Knights
lisawLisa
Williamson
keinckKatie
Einck
kneef1Kate
Neef
txiang4Tiange
Xiang
j-hummelJohn
Hummel
i-paulIain
Paul
munjanjaLloyd
Munjanja
glnGayle
Nelsen
agerardAnna
Gerard
powerskaKimberly
Powers
lolshansLisa
Olshansky
miricaLiviu
Mirica
qingcao2Qing
Cao
lisa3Lisa
Johnson
tinalambTina
Lamb
baronpBaron
Peters
bransle2Sarah
Bransley
dylanmh2Dylan
Hamilton
raegansRaegan
Smith
apm8Angad
Mehta
leverittJohn
Leveritt
xingwXing
Wang
emillrEva
Miller
jmill24Jacqueline
Miller
jlbass2Julia
Bass
ramonarRamona
Rudzinski
tlcraneTracy
Crane
cejohnstCelia
Johnston
adlAmber
LaBau
cnsolomoCandice
Solomon-Strutz
mikaelbMikael
Backlund
jacksonnNick
Jackson