Jeff Moore to collaborate on Energy Frontier Research Center projects

Date
09/07/22
The Illinois EFRC team includes Jeff Baur, aerospace engineering professor; Randy Ewoldt, MSE professor; Philippe Geubelle, aerospace engineering professor; Jeff Moore, chemistry professor, and Nancy Sottos.

By Emily Jankauski


URBANA, Ill. — The Grainger College of Engineering and the Beckman Institute for Advanced Science and Technology are ramping up immediately to house the Energy Frontier Research Center for Regenerative Energy-Efficient Manufacturing of Thermoset Polymeric Materials to address fundamental scientific challenges facing manufacturing and end-of-life management of thermoset plastics.

Nancy Sottos, department head of materials science and engineering, Swanlund Endowed Chair, Center for Advanced Study Professor and a researcher at the Beckman Institute, will serve as the principal investigator and center director for this effort, and the team of Fellow Illinois EFRC collaborators include Jeff Moore, the Stanley O. Ikenberry Endowed Chair and professor of chemistry. 

Research in Professor Moore's group integrates ideas from physical organic chemistry and engineering with polymer synthesis to invent mechanically responsive materials. Motivated by the technological need for materials that are safer and last longer, experiments are designed to understand the fundamental science of mechanochemical transduction, which in turn helps in the design of polymers that produce chemical signals or undergo chemical reactions following mechanical activation. 

“I’m thrilled to welcome this Engineering Research Center to The Grainger College of Engineering,” said Rashid Bashir, dean of Grainger Engineering. “I am proud to say that this collaborative effort with the U.S. Department of Energy will be housed at our campus, where faculty and students will innovate upcycling solutions that redefine the lifecycle of these materials.”

Thermoset polymers and composites have all the necessary chemical and mechanical properties for achieving lightweight, durable structures in the aerospace, energy and transportation industries — from aircrafts and drones, electric vehicles and wind turbine blades, and electric vehicles and trains. Unfortunately, these materials are unsustainable due to the vast energy input required for initial manufacture, long cure times to develop desired structural properties and lack of end-of-life strategies.

“Thermoset polymeric materials have to be strong and stiff and have really long lifetimes,” Sottos said.

The downside of thermoset polymeric materials occurs at the beginning and end of their lifecycles. They require copious amounts of energy and time to be processed in football-field-sized autoclaves, and they have no end-of-life strategy, according to Sottos.

“A lot of the wind turbines were rated for 30 years, and they’re hitting their 30-year life cycle right now, so they’re taking them out of commission and basically taking these giant composite structures and just putting them in a landfill,” Sottos said.

Unlike other plastics that can be recycled, like water bottles, thermoset polymeric materials cannot be broken down and reused due to their specific polymer structure, known as a permanent network polymer. But that indestructible structure is the essence of what has allowed these materials to withstand 30 years of use.

Sottos’ team aims to revolutionize thermoset polymeric materials’ life cycles in a fundamental project attempting to understand how to design these materials at the chemistry level with end-of-life strategies, manufacture them efficiently and understand how their network evolves over many life cycles.

That nanoscale level of knowledge is of utmost importance as society still does not have a way to efficiently restore recycled and upcycled plastic back to its original standard. 

“When you recycle or reuse plastic, it is often not as good as the original. It gets contaminated, and the polymer network actually changes and ages with time,” Sottos said. “What we want to do is really understand that process so we can make polymers with the needed properties and performance.”

To do that, the researchers will combine additive manufacturing, like 3D printing, with a novel energy efficient curing process known as frontal polymerization that requires much smaller amounts of energy to make thermoset plastics.  The goal is to manufacture and upcycle thermosetting polymers by putting the energy already inside of the molecules to work.

“We use a self-energized curing reaction so that you don’t actually have to put it in an oven or an autoclave,” said Sottos of her work with Beckman Institute’s Autonomous Materials Systems Group, which she leads to combine chemistry, materials science, mechanics and computational science in pursuit of materials that are structurally and functionally innovative. “So basically, the reaction to make the polymer is exothermic, and it generates a lot of heat. That heat is able to diffuse forward and propagate, so you can produce cure fronts that move through the material without additional energy input.”

This part of the Grainger Engineering team’s research will require a great deal of collaboration with experts in materials chemistry, simulation and additive manufacturing to find novel strategies for deconstructing these polymers and creating a way to make the permanent network permanent no more.

The crew will jump start its research by using machine learning at the soon-to-be-built high throughput characterization lab at the Beckman Institute that will quickly test a large number of potential formulations to narrow them down to the best fit. Similar to the process of taking a paint sample from your living room and matching the color using a hardware store’s bank of pigments, the REMAT team aims to utilize machine learning to create a bank of mixing robots that can do this for different formulations of polymers.

“There’s really interesting problems for us to work on and educate undergraduate and graduate students in sustainability and manufacturing, which is really critical for them,” Sottos said. “It’s absolutely essential that we get a handle on the end of life as much as we do in the beginning when we’re manufacturing it.”

****

Fellow Illinois EFRC collaborators include Jeff Baur, Founder Professor of aerospace engineering and affiliate professor of materials science and engineering; Randy Ewoldt, mechanical science and engineering professor and Kritzer Faculty Scholar; Philippe Geubelle, Bliss Professor of aerospace engineering; Jeff Moore, the Stanley O. Ikenberry Endowed Chair and professor of chemistry; and Sameh Tawfick, associate professor of mechanical science and engineering. Other intuitional collaborators include Harvard University, Massachusetts Institute of Technology, Sandia National Laboratories, Stanford University and the University of Utah.

This is the second U.S. DOE EFRC center on the Illinois campus. The other is a four-year, $12.6 million grant led by Fox Family professor of physics Peter Abbomonte, who aims to develop and apply nontrivial quantum-sensing methods to measure and unravel mysteries associated with three families of quantum materials.

Related People

jsmoore

Directory

scheelinAlexander
Scheeline
bjmccallBenjamin
McCall
r-gennisRobert
Gennis
j-gerltJohn
Gerlt
sgranickSteve
Granick
mgruebelMartin
Gruebele
hergenroPaul
Hergenrother
huangRaven
Huang
mlkraftMary
Kraft
leckbandDeborah
Leckband
yi-luYi
Lu
martinisSusan
Martinis
snairSatish
Nair
eoldfielEric
Oldfield
cmsCharles
Schroeder
zanZaida
Luthey-Schulten
selvinPaul
Selvin
sksScott
Silverman
s-sligarStephen
Sligar
tajkhorsEmad
Tajkhorshid
zhao5Huimin
Zhao
pbraunPaul
Braun
mdburkeMartin
Burke
jeffchanJefferson
Chan
sdenmarkScott
Denmark
dlottDana
Dlott
foutAlison
Fout
agewirthAndrew
Gewirth
ggirolamGregory
Girolami
sohirataSo
Hirata
jainPrashant
Jain
jkatzeneJohn
Katzenellenbogen
nmakriNancy
Makri
douglasmDouglas
Mitchell
jsmooreJeffrey
Moore
murphycjCatherine
Murphy
r-nuzzoRalph
Nuzzo
dimerPhilip
Phillips
rauchfuzThomas
Rauchfuss
joaquinrJoaquín
Rodríguez-López
sarlahDavid
Sarlah
kschweizKenneth
Schweizer
jsweedleJonathan
Sweedler
vddonkWilfred
van der Donk
renskeRenske
van der Veen
vuraweisJosh
Vura-Weis
mcwhite7M.
White
sczimmerSteven
Zimmerman
beakPeter
Beak
wklemperWalter
Klemperer
jdmcdonaJ.
McDonald
pogoreloTaras
Pogorelov
mshen233Mei
Shen
dewoonDavid
Woon
wboulangWilliam
Boulanger
rxbRohit
Bhargava
qchen20Qian
Chen
jianjuncJianjun
Cheng
hy66Hong
Yang
andinomaJosé
Andino Martinez
decosteDonald
DeCoste
thhuangTina
Huang
tjhummelThomas
Hummel
dkellDavid
Kell
doctorkMichael
Koerner
marvilleKelly
Marville
crrayChristian
Ray
tlbrownTheodore
Brown
rmcoatesRobert
Coates
thdjrThom
Dunning
dykstraClifford
Dykstra
j-jonasJiri
Jonas
j-lisyJames
Lisy
shapleyJohn
Shapley
pshapleyPatricia
Shapley
zumdahl2Steven
Zumdahl
ksuslickKenneth
Suslick
jcoxJenny
Cox
sqdSean
Drummond
sheeleySarah
Sheeley
jsmaddenJoseph
Madden
cknight4Connie
Knight
schulzeHeather
Schulze
kbaumgarKeena
Finney
adkssnBeatrice
Adkisson
trabari1Katie
Trabaris
metclfKara
Metcalf
ljohnso2Lori
Johnson
lchenoweLeslie
Chenoweth
wdedoWolali
Dedo
spinnerDavid
Spinner
plblumPatricia
Simpson
stevens2Chad
Stevens
lsagekarLori
Sage-Karlson
bertholdDeborah
Berthold
kecarlsoKathryn
Carlson
sdesmondSerenity
Desmond
axelson2Jordan
Axelson
scbakerStephanie
Baker
pflotschPriscila
Falagan Lotsch
dgrayDanielle
Gray
thennes2Tom
Hennessey
holdaNancy
Holda
aibarrAlejandro
Ibarra
kimshSung Hoon
Kim
kocherg2Nikolai
Kocherginsky
philipk2Philip
Kocheril
legare2Stephanie
Legare
alewandoAgnieszka
Lewandowska
smccombiStuart
McCombie
jdm5Justin
McGlauchlen
egmooreEdwin
Moore
myerscouKathleen
Myerscough
snalla2Siva
Nalla
romanovaElena
Romanova
roubakhiStanislav
Rubakhin
shvedalxAlexander
Shved
asoudaAlexander
Soudakov
xywangXiying
Wang
kwilhelKaren
Wilhelmsen
wilkeyRandy
Wilkey
silongSilong
Zhang
schlembaMary
Schlembach
trimmellAshley
Trimmell
emccarr2Elise
McCarren
cmercierChristen
Mercier
atimpermAaron
Timperman
niesShuming
Nie
hshanHee-Sun
Han
mmgMutha
Gunasekera
kknightsKatriena
Knights
lisawLisa
Williamson
keinckKatie
Einck
kneef1Kate
Neef
txiang4Tiange
Xiang
j-hummelJohn
Hummel
i-paulIain
Paul
munjanjaLloyd
Munjanja
glnGayle
Nelsen
agerardAnna
Gerard
powerskaKimberly
Powers
lolshansLisa
Olshansky
miricaLiviu
Mirica
qingcao2Qing
Cao
lisa3Lisa
Johnson
tinalambTina
Lamb
baronpBaron
Peters
bransle2Sarah
Bransley
dylanmh2Dylan
Hamilton
raegansRaegan
Smith
apm8Angad
Mehta
leverittJohn
Leveritt
xingwXing
Wang
emillrEva
Miller
jmill24Jacqueline
Miller
jlbass2Julia
Bass
ramonarRamona
Rudzinski
tlcraneTracy
Crane
cejohnstCelia
Johnston
adlAmber
LaBau
cnsolomoCandice
Solomon-Strutz
mikaelbMikael
Backlund
jacksonnNick
Jackson