Contact Information
University of Illinois
361 RAL, Box 22-5
600 South Mathews Avenue
Urbana, IL 61801
Research Areas
Biography
Professor Mitchell received his undergraduate degree in chemistry from Carnegie Mellon University in 2002. After a short internship in medicinal chemistry at Merck Research Laboratories, he moved to the University of California, Berkeley and worked with Michael Marletta. After earning his PhD in 2006, Professor Mitchell pursued postdoctoral studies with Jack Dixon at the University of California, San Diego. Professor Mitchell joined the University of Illinois faculty in 2009 and has research interests that span the interface of chemistry and biology.
Research Interests
genomics-guided natural product discovery; natural product structure and function elucidation; natural product chemical biology: mechanistic and biosynthetic enzyme chemistry; peptide engineering; synthetic biology
Research Description
We are a chemical biology group that focuses on the study of natural products. Natural products are highly evolved and functionally privileged compounds that often display complex chemical structures. These molecules have inspired generations of synthetic organic chemists, unveiled numerous fundamental biological processes as chemical probes, and served as the most significant source of chemical matter for drug discovery.
As the field of genomics has expanded, it has revealed a vast untapped wealth of natural products encoded in the DNA of sequenced organisms, particularly bacteria. Our lab has developed new tools to expedite the discovery of natural products from genomic data, including molecules from bacteria that cannot be cultivated in a lab. In particular, our lab focuses on Ribosomally synthesized and Post-translationally modified Peptides (RiPPs) which have genetically encoded substrates and an incredible diversity of post-translational modifications. Using a genes-to-molecule approach, we have uncovered numerous structurally unique RiPP molecules and revealed the unprecedented mechanistic enzymology through which they form. We then leverage the new biosynthetic knowledge to produce new-to-nature compounds with improved or novel activities with the long-term goal of unleashing the full biosynthetic potential of Nature to reshape the diagnosis and treatment of human disease.
For a more detailed research description see: https://mitchell-lab.chemistry.illinois.edu/index.html
Awards and Honors
2015 National Fresenius Award, Phi Lambda Upsilon (National Chemistry Honor Society)
2015 Camille Dreyfus Teacher-Scholar Award
2015-2016 Helen Corley Petit Scholar (UIUC College of Liberal Arts and Sciences)
2015 Pfizer Award in Enzyme Chemistry (ACS Division of Biological Chemistry)
Tomorrow's PI: Genome Technology magazine
Packard Fellowship in Science and Engineering
NIH Director's New Innovator Award
Additional Campus Affiliations
Professor, Carl R. Woese Institute for Genomic Biology
Affiliate, Microbiology
Honors & Awards
2015 National Fresenius Award, Phi Lambda Upsilon (National Chemistry Honor Society)
2015 Camille Dreyfus Teacher-Scholar Award
2015-2016 Helen Corley Petit Scholar (UIUC College of Liberal Arts and Sciences)
2015 Pfizer Award in Enzyme Chemistry (ACS Division of Biological Chemistry)
Tomorrow's PI: Genome Technology magazine
Packard Fellowship in Science and Engineering
NIH Director's New Innovator Award
Recent Publications
Fernandez, H. N., Kretsch, A. M., Kunakom, S., Kadjo, A. E., Mitchell, D. A., & Eustáquio, A. S. (2024). High-Yield Lasso Peptide Production in a Burkholderia Bacterial Host by Plasmid Copy Number Engineering. ACS synthetic biology, 13(1), 337-350. https://doi.org/10.1021/acssynbio.3c00597
Harris, L. A., Saad, H., Shelton, K. E., Zhu, L., Guo, X., & Mitchell, D. A. (2024). Tryptophan-Centric Bioinformatics Identifies New Lasso Peptide Modifications. Biochemistry, 63(7), 865-879. https://doi.org/10.1021/acs.biochem.4c00035
Lee, A. R., Carter, R. S., Imani, A. S., Dommaraju, S. R., Hudson, G. A., Mitchell, D. A., & Freeman, M. F. (2024). Discovery of Borosin Catalytic Strategies and Function through Bioinformatic Profiling. ACS chemical biology, 19(5), 1116-1124. https://doi.org/10.1021/acschembio.4c00066
Nguyen, D. T., Zhu, L., Gray, D. L., Woods, T. J., Padhi, C., Flatt, K. M., Mitchell, D. A., & van der Donk, W. A. (2024). Biosynthesis of Macrocyclic Peptides with C‑Terminal β‑Amino-α-keto Acid Groups by Three Different Metalloenzymes. ACS Central Science, 10(5), 1022-1032. https://doi.org/10.1021/acscentsci.4c00088
Nguyen, D. T., Mitchell, D. A., & van der Donk, W. A. (2024). Genome Mining for New Enzyme Chemistry. ACS Catalysis, 14(7), 4536-4553. https://doi.org/10.1021/acscatal.3c06322