New Anti-microbial Compounds Evade Resistance with Less Toxicity

Date

06/30/15

New compounds that specifically attack fungal infections without attacking human cells could transform treatment for such infections and point the way to targeted medicines that evade antibiotic resistance.

Led by University of Illinois chemistry professor Martin D. Burke, a team of chemists, microbiologists and immunologists developed and tested several derivatives of the antifungal drug amphotericin B (pronounced am-foe-TARE-uh-sin B). They published their findings in the journal Nature Chemical Biology.

Amphotericin B is doctors’ last, best defense against life-threatening fungal infections that invade a patient’s blood and tissues, said Burke, who also is a medical doctor and a Howard Hughes Medical Institute Early Career Scientist. In half a century of use, amphotericin has yet to be overcome by new resistant strains of pathogens.

“The problem with this drug is that it is also highly toxic, particularly to the kidneys, and this limits the dose that can be given to a patient. As a result, invasive fungal infections still carry a mortality rate of about 50 percent, resulting in more than 1.5 million deaths each year – more than malaria or tuberculosis,” said Burke.

Burke’s group previously discovered that amphotericin B kills yeast and fungi by targeting a particular lipid molecule essential to the microbe’s physiology, which is what makes it such an effective treatment, but it also binds to cholesterol in humans, which is thought to be what makes it so toxic.

In the new paper, Burke’s group performed three simple chemical steps to convert amphotericin B to compounds that would bind more specifically to the lipid in fungi but not to cholesterol. They found particular derivatives that were extremely effective in killing invasive yeast infections in mice, but without the mice showing any signs of toxicity – even at much higher doses than a fatal dose of amphotericin B.

The researchers were concerned that because the drugs acted so specifically, resistant strains might emerge much faster. However, even when trying to generate mutations that would make yeast resistant, the researchers found that the derivatives were as elusive to resistance as the original amphotericin B, thus proving that targeted drugs and low resistance are not mutually exclusive.

"It has long been suspected that the unique capacity for amphotericin B to evade new resistance and its exceptional toxicity were inextricably linked," Burke said. "We were surprised and very gratified to find that these derivatives are no more vulnerable to resistance than amphotericin B, which has evaded new resistance development in patients for more than half a century."

"Learning more about basic chemical processes paves the way for medical advances," said Jon Lorsch, the director of the National Institutes of Health’s National Institute of General Medical Sciences, which partially funded the research. "In this elegant example, detailed knowledge of how a drug interacts with its target has pointed not only to possible improvements in our ability to treat life-threatening fungal infections, but also to a new approach for designing antimicrobial drugs."

Since amphotericin B is manufactured in mass quantities, the new compounds also could be made on a large scale. REVOLUTION Medicines, a company Burke co-founded, has licensed the compounds to develop optimal drug candidates and to pursue clinical studies.

Burke hopes that this method of tweaking naturally occurring compounds to make them more specific and less toxic not only produces better therapies for life-threatening fungal infections, but also helps in the development of other medications that circumvent resistance.

"More broadly, these results suggest that binding microbial-specific lipids that are critical for microbial physiology could represent a more general path to nontoxic yet resistance-evasive antimicrobial agents," Burke said.

Excerpted from UIUC's News Bureau original article, author Liz Ahlberg

Photo by L. Brian Stauffer

Custom Tags

Related People

Directory

scheelinAlexander
Scheeline
bjmccallBenjamin
McCall
cmartn10Calgary
Martin
r-gennisRobert
Gennis
j-gerltJohn
Gerlt
sgranickSteve
Granick
mgruebelMartin
Gruebele
hergenroPaul
Hergenrother
huangRaven
Huang
mlkraftMary
Kraft
leckbandDeborah
Leckband
yi-luYi
Lu
martinisSusan
Martinis
snairSatish
Nair
eoldfielEric
Oldfield
rienstraChad
Rienstra
cmsCharles
Schroeder
zanZaida
Luthey-Schulten
sksScott
Silverman
s-sligarStephen
Sligar
zhao5Huimin
Zhao
mselfba2Michelle
Self-Ballard
pbraunPaul
Braun
mdburkeMartin
Burke
jeffchanJefferson
Chan
sdenmarkScott
Denmark
dlottDana
Dlott
foutAlison
Fout
agewirthAndrew
Gewirth
ggirolamGregory
Girolami
shs3Sharon
Hammes-Schiffer
sohirataSo
Hirata
kamihullKami
Hull
jainPrashant
Jain
jkatzeneJohn
Katzenellenbogen
nmakriNancy
Makri
douglasmDouglas
Mitchell
jsmooreJeffrey
Moore
murphycjCatherine
Murphy
r-nuzzoRalph
Nuzzo
dimerPhilip
Phillips
rauchfuzThomas
Rauchfuss
joaquinrJoaquín
Rodríguez-López
jrogersJohn
Rogers
sarlahDavid
Sarlah
kschweizKenneth
Schweizer
jsweedleJonathan
Sweedler
vddonkWilfred
van der Donk
renskeRenske
van der Veen
vuraweisJosh
Vura-Weis
mcwhite7M.
White
sczimmerSteven
Zimmerman
beakPeter
Beak
wklemperWalter
Klemperer
jdmcdonaJ.
McDonald
mvp11Michael
Pak
pogoreloTaras
Pogorelov
mshen233Mei
Shen
dewoonDavid
Woon
wboulangWilliam
Boulanger
rxbRohit
Bhargava
qchen20Qian
Chen
jianjuncJianjun
Cheng
hy66Hong
Yang
andinomaJosé
Andino Martinez
decosteDonald
DeCoste
thhuangTina
Huang
tjhummelThomas
Hummel
dkellDavid
Kell
doctorkMichael
Koerner
marvilleKelly
Marville
crrayChristian
Ray
tlbrownTheodore
Brown
rmcoatesRobert
Coates
thdjrThom
Dunning,
dykstraClifford
Dykstra
j-jonasJiri
Jonas
j-lisyJames
Lisy
shapleyJohn
Shapley
pshapleyPatricia
Shapley
awieckowAndrzej
Wieckowski
zumdahl2Steven
Zumdahl
ksuslickKenneth
Suslick
jlbearJodi
Bear
jcoxJenny
Cox
ealthausEllen
Althaus
staciryStaci
Ryan
sqdSean
Drummond
dmillsDouglas
Mills
sheeleySarah
Sheeley
jsmaddenJoseph
Madden
cknight4Connie
Knight
schulzeHeather
Schulze
slangleySamantha
Langley
ssmurrayStar
Murray
kbaumgarKeena
Finney
adkssnBeatrice
Adkisson
bmylerBeth
Myler
trabari1Katie
Trabaris
kewatsonKaren
Watson
strussTheresa
Struss
metclfKara
Metcalf
ljohnso2Lori
Johnson
jlwJamison
Lowe
jenruslJennifer
Russell
lchenoweLeslie
Chenoweth
jcfJonathan
Freiman
wdedoWolali
Dedo
ebielserElaina
Kutz
spinnerDavid
Spinner
plblumPatricia
Simpson
stevens2Chad
Stevens
lsagekarLori
Sage-Karlson
bertholdDeborah
Berthold
kecarlsoKathryn
Carlson
tlchen4Timothy
Chen
sdesmondSerenity
Desmond
angelaecAngela
Crawford
hsahmed3Hajira
Ahmed
kakinsKenye
Akins
asali3Arzeena
Ali
axelson2Jordan
Axelson
bai11Yugang
Bai
scbakerStephanie
Baker
duffin2Kevin
Duffin
duttadDebapriya
Dutta
pflotschPriscila
Falagan Lotsch
iflemingIan
Fleming
dgrayDanielle
Gray
thennes2Thomas
Hennessey
mhettingMary Jo
Hettinger
holdaNancy
Holda
holler2Jordan
Holler
aibarrAlejandro
Ibarra
kimshSung Hoon
Kim
kocherg2Nikolai
Kocherginsky
philipk2Philip
Kocheril
dlee106David
Lee
legare2Stephanie
Legare
alewandoAgnieszka
Lewandowska
qianliliQianli
Li
bdmccallBirgit
McCall
smccombiStuart
McCombie
jdm5Justin
McGlauchlen
egmooreEdwin
Moore
myerscouKathleen
Myerscough
snalla2Siva
Nalla
oraham2Aaron
Oraham
lah5LeeAnn
Pannebaker
poonawa2Maria
Poonawalla
rrollerR.
Roller
romanovaElena
Romanova
roubakhiStanislav
Rubakhin
vsfVictoria
Shepherd-Fortner
shvedalxAlexander
Shved
asoudaAlexander
Soudakov
ktsween2Kalee
Sweeney
sktarterSamantha
Tarter
aathoma2Andy
Thomas
kwilhelKaren
Wilhelmsen
wilkeyRandy
Wilkey
luxu3Lu
Xu
yuanyao4Yuan
Yao
silongSilong
Zhang
schlembaMary
Schlembach
emccarr2Elise
McCarren
cmercierChristen
Mercier