Tiny Electronic Implants Monitor Brain Injury, Then Melt Away

Date

01/31/16

The small sensor connects to an embeddable wireless transmitter that lies on top of the skull.

A new class of small, thin electronic sensors can monitor temperature and pressure within the skull – crucial health parameters after a brain injury or surgery – then melt away when they are no longer needed, eliminating the need for additional surgery to remove the monitors and reducing the risk of infection and hemorrhage.

Similar sensors can be adapted for postoperative monitoring in other body systems as well, the researchers say. Led by John A. Rogers, a professor of materials science and engineering at the University of Illinois at Urbana-Champaign, and Wilson Ray, a professor of neurological surgery at the Washington University School of Medicine in St. Louis, the researchers published their work in the journal Nature.

“This is a new class of electronic biomedical implants,” said Rogers, who directs the Frederick Seitz Materials Research Laboratory at Illinois. “These kinds of systems have potential across a range of clinical practices, where therapeutic or monitoring devices are implanted or ingested, perform a sophisticated function, and then resorb harmlessly into the body after their function is no longer necessary.”

After a traumatic brain injury or brain surgery, it is crucial to monitor the patient for swelling and pressure on the brain. Current monitoring technology is bulky and invasive, Rogers said, and the wires restrict the patent’s movement and hamper physical therapy as they recover. Because they require continuous, hard-wired access into the head, such implants also carry the risk of allergic reactions, infection and hemorrhage, and even could exacerbate the inflammation they are meant to monitor.

“If you simply could throw out all the conventional hardware and replace it with very tiny, fully implantable sensors capable of the same function, constructed out of bioresorbable materials in a way that also eliminates or greatly miniaturizes the wires, then you could remove a lot of the risk and achieve better patient outcomes,” Rogers said. ”We were able to demonstrate all of these key features in animal models, with a measurement precision that’s just as good as that of conventional devices.”

The new devices incorporate dissolvable silicon technology developed by Rogers’ group at the U. of I. The sensors, smaller than a grain of rice, are built on extremely thin sheets of silicon – which are naturally biodegradable – that are configured to function normally for a few weeks, then dissolve away, completely and harmlessly, in the body’s own fluids.

Rogers’ group teamed with Illinois materials science and engineering professor Paul V. Braun to make the silicon platforms sensitive to clinically relevant pressure levels in the intracranial fluid surrounding the brain. They also added a tiny temperature sensor and connected it to a wireless transmitter roughly the size of a postage stamp, implanted under the skin but on top of the skull.

A downloadable image gallery is available.

The Illinois group worked with clinical experts in traumatic brain injury at Washington University to implant the sensors in rats, testing for performance and biocompatibility. They found that the temperature and pressure readings from the dissolvable sensors matched conventional monitoring devices for accuracy.

An artist’s rendering of the brain sensor and wireless transmitter monitoring a rat’s brain.

An artist’s rendering of the brain sensor and wireless transmitter monitoring a rat’s brain.

Image by Julie McMahon

“The ultimate strategy is to have a device that you can place in the brain – or in other organs in the body – that is entirely implanted, intimately connected with the organ you want to monitor and can transmit signals wirelessly to provide information on the health of that organ, allowing doctors to intervene if necessary to prevent bigger problems,” said Rory Murphy, a neurosurgeon at Washington University and co-author of the paper. “After the critical period that you actually want to monitor, it will dissolve away and disappear.”

The researchers are moving toward human trials for this technology, as well as extending its functionality for other biomedical applications.

“We have established a range of device variations, materials and measurement capabilities for sensing in other clinical contexts,” Rogers said. “In the near future, we believe that it will be possible to embed therapeutic function, such as electrical stimulation or drug delivery, into the same systems while retaining the essential bioresorbable character.”

The National Institutes of Health, the Defense Advanced Research Projects Agency and the Howard Hughes Medical Institute supported this work. Rogers and Braun are affiliated with the Beckman Institute for Advanced Science and Technology at the U. of I.

Excerpted from UIUC News Bureau article by Liz Ahlberg

Related People

Directory

scheelinAlexander
Scheeline
bjmccallBenjamin
McCall
cmartn10Calgary
Martin
r-gennisRobert
Gennis
j-gerltJohn
Gerlt
sgranickSteve
Granick
mgruebelMartin
Gruebele
hergenroPaul
Hergenrother
huangRaven
Huang
mlkraftMary
Kraft
leckbandDeborah
Leckband
yi-luYi
Lu
martinisSusan
Martinis
snairSatish
Nair
eoldfielEric
Oldfield
rienstraChad
Rienstra
cmsCharles
Schroeder
zanZaida
Luthey-Schulten
sksScott
Silverman
s-sligarStephen
Sligar
zhao5Huimin
Zhao
mselfba2Michelle
Self-Ballard
pbraunPaul
Braun
mdburkeMartin
Burke
jeffchanJefferson
Chan
sdenmarkScott
Denmark
dlottDana
Dlott
foutAlison
Fout
agewirthAndrew
Gewirth
ggirolamGregory
Girolami
shs3Sharon
Hammes-Schiffer
sohirataSo
Hirata
kamihullKami
Hull
jainPrashant
Jain
jkatzeneJohn
Katzenellenbogen
nmakriNancy
Makri
douglasmDouglas
Mitchell
jsmooreJeffrey
Moore
murphycjCatherine
Murphy
r-nuzzoRalph
Nuzzo
dimerPhilip
Phillips
rauchfuzThomas
Rauchfuss
joaquinrJoaquín
Rodríguez-López
jrogersJohn
Rogers
sarlahDavid
Sarlah
kschweizKenneth
Schweizer
jsweedleJonathan
Sweedler
vddonkWilfred
van der Donk
renskeRenske
van der Veen
vuraweisJosh
Vura-Weis
mcwhite7M.
White
sczimmerSteven
Zimmerman
beakPeter
Beak
wklemperWalter
Klemperer
jdmcdonaJ.
McDonald
mvp11Michael
Pak
pogoreloTaras
Pogorelov
mshen233Mei
Shen
dewoonDavid
Woon
wboulangWilliam
Boulanger
rxbRohit
Bhargava
qchen20Qian
Chen
jianjuncJianjun
Cheng
hy66Hong
Yang
andinomaJosé
Andino Martinez
decosteDonald
DeCoste
thhuangTina
Huang
tjhummelThomas
Hummel
dkellDavid
Kell
doctorkMichael
Koerner
marvilleKelly
Marville
crrayChristian
Ray
tlbrownTheodore
Brown
rmcoatesRobert
Coates
thdjrThom
Dunning,
dykstraClifford
Dykstra
j-jonasJiri
Jonas
j-lisyJames
Lisy
shapleyJohn
Shapley
pshapleyPatricia
Shapley
awieckowAndrzej
Wieckowski
zumdahl2Steven
Zumdahl
ksuslickKenneth
Suslick
jlbearJodi
Bear
jcoxJenny
Cox
ealthausEllen
Althaus
staciryStaci
Ryan
sqdSean
Drummond
dmillsDouglas
Mills
sheeleySarah
Sheeley
jsmaddenJoseph
Madden
cknight4Connie
Knight
schulzeHeather
Schulze
slangleySamantha
Langley
ssmurrayStar
Murray
kbaumgarKeena
Finney
adkssnBeatrice
Adkisson
bmylerBeth
Myler
trabari1Katie
Trabaris
kewatsonKaren
Watson
strussTheresa
Struss
metclfKara
Metcalf
ljohnso2Lori
Johnson
jlwJamison
Lowe
jenruslJennifer
Russell
lchenoweLeslie
Chenoweth
jcfJonathan
Freiman
wdedoWolali
Dedo
ebielserElaina
Kutz
spinnerDavid
Spinner
plblumPatricia
Simpson
stevens2Chad
Stevens
lsagekarLori
Sage-Karlson
bertholdDeborah
Berthold
kecarlsoKathryn
Carlson
tlchen4Timothy
Chen
sdesmondSerenity
Desmond
angelaecAngela
Crawford
hsahmed3Hajira
Ahmed
kakinsKenye
Akins
asali3Arzeena
Ali
axelson2Jordan
Axelson
bai11Yugang
Bai
scbakerStephanie
Baker
duffin2Kevin
Duffin
duttadDebapriya
Dutta
pflotschPriscila
Falagan Lotsch
iflemingIan
Fleming
dgrayDanielle
Gray
thennes2Thomas
Hennessey
mhettingMary Jo
Hettinger
holdaNancy
Holda
holler2Jordan
Holler
aibarrAlejandro
Ibarra
kimshSung Hoon
Kim
kocherg2Nikolai
Kocherginsky
philipk2Philip
Kocheril
dlee106David
Lee
legare2Stephanie
Legare
alewandoAgnieszka
Lewandowska
qianliliQianli
Li
bdmccallBirgit
McCall
smccombiStuart
McCombie
jdm5Justin
McGlauchlen
egmooreEdwin
Moore
myerscouKathleen
Myerscough
snalla2Siva
Nalla
oraham2Aaron
Oraham
lah5LeeAnn
Pannebaker
poonawa2Maria
Poonawalla
rrollerR.
Roller
romanovaElena
Romanova
roubakhiStanislav
Rubakhin
vsfVictoria
Shepherd-Fortner
shvedalxAlexander
Shved
asoudaAlexander
Soudakov
ktsween2Kalee
Sweeney
sktarterSamantha
Tarter
aathoma2Andy
Thomas
kwilhelKaren
Wilhelmsen
wilkeyRandy
Wilkey
luxu3Lu
Xu
yuanyao4Yuan
Yao
silongSilong
Zhang
schlembaMary
Schlembach
emccarr2Elise
McCarren
cmercierChristen
Mercier
atimpermAaron
Timperman
niesShuming
Nie
hshanHee-Sun
Han
mmgMutha
Gunasekera