Method Opens a Window on How Stress and Strain Affect Battery Performance

Date

08/01/16

Illinois professors Nancy Sottos and Andrew Gerwith developed a method to comprehensively measure the mechanical stress and strain in lithium-ion batteries. It revealed a point of stress in charging that, if addressed through new methods or materials, could lead to faster-charging batteries. 

Batteries that charge faster and have greater capacity could boost portable electronic devices and electric cars. A new method to simultaneously test stress and strain in battery electrodes gives researchers a window into the mechanical, electrical and chemical forces within lithium-ion batteries. The method revealed an unexpected point of stress in the charging cycle, which could guide development of better batteries.

University of Illinois chemistry professor Andrew Gewirthmaterials science and engineering professor Nancy Sottos and graduate students Elizabeth Jones and Hadi Tavassol published their work in the journal Nature Materials.

“We are finding limitations that are preventing the material from operating properly,” Gewirth said. “We are trying to understand what those limitations are and then develop materials and ways of processing materials that overcome them.”

A lithium-ion battery works by transferring lithium ions between two electrodes: the cathode and anode. When the battery is charged, lithium goes into the anode, which causes the material to expand. When the battery is discharged, the lithium leaves the anode, causing it to contract. However, because the material is constrained within the battery cell, it cannot truly expand and contract as it would when unconstrained, which causes mechanical stress within the material, Sottos said. Most methods of studying battery operation focus on electrochemistry, overlooking this mechanical response, she said.

“The relationship between the electrochemistry and the development of stress and strain is not well understood,” said Sottos. “The stress and strain can actually change the way a battery functions, and usually in a negative way – like the capacity will fade, or it will cause small cracks that cause reactions you don’t expect.”

The researchers combined two techniques to get a more holistic picture of the mechanical forces during battery charging and discharging. They measured the strain, or how much the material expands, by seeding the anode with fluorescent nanoparticles and precisely measuring their movement as the battery went through charging cycles. Meanwhile, they measured stress, or how much the material bends or buckles, using an advanced optical technique.

“There have been other ways of looking at batteries – electrochemical methods, circuit methods, techniques involving light – but no one has done a comprehensive mechanical probe the way that we have,” Gewirth said. “Stress and strain have been measured separately, but no one has even looked at them together before.”

The researchers have dubbed their holistic measurement “electrochemical stiffness,” defined as the ratio of stress to strain.

The measurement has already revealed one surprising finding: Right before the lithium is taken up by the anode, there is a spike in stress.

“We didn’t expect there would be a barrier or an impediment to the lithiation process,” Gewirth said. “First, it shows us where the impediment is for charging. Now that we know where it is, we can work on ways to fix it. Second, it gives us a better idea of how the battery actually works.”

The electrochemical stiffness measurement technique is not limited to lithium-ion batteries, the researchers say, but can be used on a wide variety of ion-battery materials. Now that they have studied the anode, they are using the technique to study the cathode, which has its own properties and behaviors, Sottos said.

“These experiments are giving insight that it’s not just an electrochemical issue; it’s a mechanical issue,“ Sottos said. “We think we are beginning to understand some of the factors that are hindering faster battery charging. We may be able to identify things that let us charge faster and have higher capacity, with less capacity fade over time.”

The Center for Electrochemical Energy Science, an Energy Frontier Research Center funded by the U.S. Department of Energy, supported this work. Sottos also is affiliated with the Beckman Institute for Advanced Science and Technology at the U. of I.

Article excerpted from a University of Illinois article by Liz Ahlberg Touchstone

Photo by L. Brian Stauffer

Related People

Directory

scheelinAlexander
Scheeline
bjmccallBenjamin
McCall
cmartn10Calgary
Martin
r-gennisRobert
Gennis
j-gerltJohn
Gerlt
sgranickSteve
Granick
mgruebelMartin
Gruebele
hergenroPaul
Hergenrother
huangRaven
Huang
mlkraftMary
Kraft
leckbandDeborah
Leckband
yi-luYi
Lu
martinisSusan
Martinis
snairSatish
Nair
eoldfielEric
Oldfield
rienstraChad
Rienstra
cmsCharles
Schroeder
zanZaida
Luthey-Schulten
sksScott
Silverman
s-sligarStephen
Sligar
zhao5Huimin
Zhao
mselfba2Michelle
Self-Ballard
pbraunPaul
Braun
mdburkeMartin
Burke
jeffchanJefferson
Chan
sdenmarkScott
Denmark
dlottDana
Dlott
foutAlison
Fout
agewirthAndrew
Gewirth
ggirolamGregory
Girolami
shs3Sharon
Hammes-Schiffer
sohirataSo
Hirata
kamihullKami
Hull
jainPrashant
Jain
jkatzeneJohn
Katzenellenbogen
nmakriNancy
Makri
douglasmDouglas
Mitchell
jsmooreJeffrey
Moore
murphycjCatherine
Murphy
r-nuzzoRalph
Nuzzo
dimerPhilip
Phillips
rauchfuzThomas
Rauchfuss
joaquinrJoaquín
Rodríguez-López
jrogersJohn
Rogers
sarlahDavid
Sarlah
kschweizKenneth
Schweizer
jsweedleJonathan
Sweedler
vddonkWilfred
van der Donk
renskeRenske
van der Veen
vuraweisJosh
Vura-Weis
mcwhite7M.
White
sczimmerSteven
Zimmerman
beakPeter
Beak
wklemperWalter
Klemperer
jdmcdonaJ.
McDonald
mvp11Michael
Pak
pogoreloTaras
Pogorelov
mshen233Mei
Shen
dewoonDavid
Woon
wboulangWilliam
Boulanger
rxbRohit
Bhargava
qchen20Qian
Chen
jianjuncJianjun
Cheng
hy66Hong
Yang
andinomaJosé
Andino Martinez
decosteDonald
DeCoste
thhuangTina
Huang
tjhummelThomas
Hummel
dkellDavid
Kell
doctorkMichael
Koerner
marvilleKelly
Marville
crrayChristian
Ray
tlbrownTheodore
Brown
rmcoatesRobert
Coates
thdjrThom
Dunning,
dykstraClifford
Dykstra
j-jonasJiri
Jonas
j-lisyJames
Lisy
shapleyJohn
Shapley
pshapleyPatricia
Shapley
awieckowAndrzej
Wieckowski
zumdahl2Steven
Zumdahl
ksuslickKenneth
Suslick
jlbearJodi
Bear
jcoxJenny
Cox
ealthausEllen
Althaus
staciryStaci
Ryan
sqdSean
Drummond
dmillsDouglas
Mills
sheeleySarah
Sheeley
jsmaddenJoseph
Madden
cknight4Connie
Knight
schulzeHeather
Schulze
slangleySamantha
Langley
ssmurrayStar
Murray
kbaumgarKeena
Finney
adkssnBeatrice
Adkisson
bmylerBeth
Myler
trabari1Katie
Trabaris
kewatsonKaren
Watson
strussTheresa
Struss
metclfKara
Metcalf
ljohnso2Lori
Johnson
jlwJamison
Lowe
jenruslJennifer
Russell
lchenoweLeslie
Chenoweth
jcfJonathan
Freiman
wdedoWolali
Dedo
ebielserElaina
Kutz
spinnerDavid
Spinner
plblumPatricia
Simpson
stevens2Chad
Stevens
lsagekarLori
Sage-Karlson
bertholdDeborah
Berthold
kecarlsoKathryn
Carlson
tlchen4Timothy
Chen
sdesmondSerenity
Desmond
angelaecAngela
Crawford
hsahmed3Hajira
Ahmed
kakinsKenye
Akins
asali3Arzeena
Ali
axelson2Jordan
Axelson
bai11Yugang
Bai
scbakerStephanie
Baker
duffin2Kevin
Duffin
duttadDebapriya
Dutta
pflotschPriscila
Falagan Lotsch
iflemingIan
Fleming
dgrayDanielle
Gray
thennes2Thomas
Hennessey
mhettingMary Jo
Hettinger
holdaNancy
Holda
holler2Jordan
Holler
aibarrAlejandro
Ibarra
kimshSung Hoon
Kim
kocherg2Nikolai
Kocherginsky
philipk2Philip
Kocheril
dlee106David
Lee
legare2Stephanie
Legare
alewandoAgnieszka
Lewandowska
qianliliQianli
Li
bdmccallBirgit
McCall
smccombiStuart
McCombie
jdm5Justin
McGlauchlen
egmooreEdwin
Moore
myerscouKathleen
Myerscough
snalla2Siva
Nalla
oraham2Aaron
Oraham
lah5LeeAnn
Pannebaker
poonawa2Maria
Poonawalla
rrollerR.
Roller
romanovaElena
Romanova
roubakhiStanislav
Rubakhin
vsfVictoria
Shepherd-Fortner
shvedalxAlexander
Shved
asoudaAlexander
Soudakov
ktsween2Kalee
Sweeney
sktarterSamantha
Tarter
aathoma2Andy
Thomas
kwilhelKaren
Wilhelmsen
wilkeyRandy
Wilkey
luxu3Lu
Xu
yuanyao4Yuan
Yao
silongSilong
Zhang
schlembaMary
Schlembach
emccarr2Elise
McCarren
cmercierChristen
Mercier
atimpermAaron
Timperman
niesShuming
Nie
hshanHee-Sun
Han
mmgMutha
Gunasekera